Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T06:44:16.406Z Has data issue: false hasContentIssue false

Low‐temperature low‐stress silicon nitride for optoelectronic Applications prepared by electron cyclotron resonance plasma Chemical‐vapor deposition

Published online by Cambridge University Press:  10 February 2011

S. Belkouch
Affiliation:
National Research Council of Canada., Institute for Microstructural Sciences, Ottawa, Ontario, Canada, K1A 0R6
D. Landheer
Affiliation:
National Research Council of Canada., Institute for Microstructural Sciences, Ottawa, Ontario, Canada, K1A 0R6
R. Taylor
Affiliation:
National Research Council of Canada., Institute for Microstructural Sciences, Ottawa, Ontario, Canada, K1A 0R6
K. Rajesh
Affiliation:
National Research Council of Canada., Institute for Microstructural Sciences, Ottawa, Ontario, Canada, K1A 0R6
G. I. Sproule
Affiliation:
National Research Council of Canada., Institute for Microstructural Sciences, Ottawa, Ontario, Canada, K1A 0R6
Get access

Abstract

Silicon nitride films have been deposited with a single‐magnet electron‐resonance deposition system using nitrogen and silane as the reaction gases at substrate temperatures of 110°C and 300°C. The films are slightly nitrogen‐rich with no measurable Si‐H bonds measurable by Fourier Transform infrared spectroscopy and the concentration of hydrogen present as N‐H bonds increases with increasing SiH4/N2. The stress levels in the films can be controlled from tensile to compressive by decreasing the SiH4/N2 flow ratio and very low stress can be obtained with N‐H bond concentrations of 4 at. %. The optical bandgap for the layer with the lowest stress value (‐11.5 MPa), deposited at 300°C was 4.9 eV, as determined from a taue plot, and the waveguide loss at 632.8 nm was 2.3 dB/cm for 500 nm thick film deposited on fused silica.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Stutius, W. and Streifer, W., Applied Optics. 16, 3218 (1977).Google Scholar
2 Taylor, J. A., J. Vac. Sci. Technol. A 9, 2464 (1991).Google Scholar
3 Cotler, T. J. and Chapple‐Sokol, J., J. Electrochem. Soc. 140, 2071 (1993).Google Scholar
4 Pearce, C. W., Fetcho, R. F., Gross, M. D., Koefer, R. F., and Pudliner, R. A., J. Appl. Phys. 71, 1838(1992).Google Scholar
5 Smith, D. L., Mat. Res. Soc. Symp. Proc. 165, 69 (1990).Google Scholar
6 Tsu, D. V. and Lucovsky, G., J. Vac. Sci. Technol. A. 4, 480 (1986).Google Scholar
7 Lucovsky, G., Richard, P. D., Tau, D. V., Lin, S. Y., and Markunas, R. J., J. Vac. Sci. Technol. A4, 681(1986).Google Scholar
8 Lucovsky, G., Ma, Y., He, S. S., Yasuda, T., Stephens, D. J., and Habermehl, S., Mat. Res. Soc. Proc. 284, 33(1993).Google Scholar
9 Lu, Z., Ma, Y., Habermehl, S., and Lucovsky, G., Mat. Res. Soc. Proc. 334, 341 (1994).Google Scholar
10 Dzioba, S., Meikle, S., and Streater, R., J. Electrochem. Soc. 134, 2599 (1987)Google Scholar
11 Landheer, D., Skinner, N. G., Jackman, T. E., Thompson, D. A., Simmons, J. G., Stevanovic, D. V., and Khatamian, D., J. Vac. Sci. Technol. A9, 2594 (1991).Google Scholar
12 Matsuo, S. and Kiuchi, M., Jpn. J. Appl, Phys. 22, L210 (1983).Google Scholar
13 Kato, I., Noguchi, K. and Numada, K. J. Appl. Phys. 62, 492 (1987).Google Scholar
14 Hirao, T., Kitagawa, M., Kamada, T., Tsukamoto, K., Yoshioka, Y.,, Kuramasu, K., Korechika, T. and Wasa, K., Jpn. J. Appl. Phys. 27, 1609 (1988).Google Scholar
15 Hirao, T., Kamada, T., Kitagawa, M., Tetsune, K., Wasa, K., Matsuda, A. and Tanaka, K., Jpn. J. Appl. Phys. 27, 528 (1988).Google Scholar
16 Barbour, J. C., Popov, J. H., Yoder, M., Outten, C. A., J. Vac. Sei. Technol. A 9, 480 (1991).Google Scholar
17 Flemish, J. R. and Pfeffer, R. L., J. Appl. Phys. 74, 3277 (1993).Google Scholar
18 Hernandez, M. J., Garrido, J., Martinez, J., and Piqueras, J., J. Electrochem. Soc. 141, 3234 (1994).Google Scholar
19 Ahn, J. and Suzuki, K., Appl. Phys. Lett. 64, 3249 (1994).Google Scholar
20 Jansen, F. and Khuman, D., J. Vac. Sei. Technol. A 6, 13 (1988).Google Scholar
21 Landheer, D., Tao, Y., Hülse, J. E., Quance, T., and Xu, D.‐X., J. Electrochem. Soc. 143, 1681 (1996).Google Scholar
22 Glang, R., Holmwood, R. A., and Rosenfield, R. L., Rev. Sei. Instrum. 36, 7 (1965).Google Scholar
23 Lanford, W. A. and Rand, M. J., J. Appl. Phys. 49, 2473 (1978).Google Scholar