Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T07:08:20.571Z Has data issue: false hasContentIssue false

Major Advances in the Synthesis of POSS Monomers

Published online by Cambridge University Press:  01 February 2011

Frank J. Feher
Affiliation:
Department of Chemistry, University of California Irvine, CA 92697–2025, U.S.A.
Raquel Terroba
Affiliation:
Department of Chemistry, University of California Irvine, CA 92697–2025, U.S.A.
Ren-Zhi Jin
Affiliation:
Department of Chemistry, University of California Irvine, CA 92697–2025, U.S.A.
Sabine Lücke
Affiliation:
Department of Chemistry, University of California Irvine, CA 92697–2025, U.S.A.
Frank Nguyen
Affiliation:
Department of Chemistry, University of California Irvine, CA 92697–2025, U.S.A.
Richard Brutchey
Affiliation:
Department of Chemistry, University of California Irvine, CA 92697–2025, U.S.A.
Kevin D Wyndham
Affiliation:
Department of Chemistry, University of California Irvine, CA 92697–2025, U.S.A.
Get access

Abstract

Several new methods have been developed for the synthesis of POSS monomers from fully condensed [RSiO3/2]n and [ROSiO3/2]n (n = 6 or 8) frameworks. These methods, which all rely on highly selective base-catalyzed reactions of Si/O frameworks, provide unprecedented access to new POSS monomers and the means for manufacturing useful POSS monomers on a large scale from readily available silane monomers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Voronkov, M. G.; Lavrent'ev, V. Top. Curr. Chem. 1982, 102, 199236.Google Scholar
2. Scott, D. W. J. Am. Chem. Soc. 1946, 68, 356–8.Google Scholar
3. Schwab, J. J.; Lichtenhan, J. D. Appl. Organomet. Chem. 1998, 12, 707–13.Google Scholar
4. Lichtenhan, J. D. Comments Inorg. Chem. 1995, 17, 115–30.Google Scholar
5. Lichtenhan, J. D.; Noel, C. J.; Bolf, A. G.; Ruth, P. N. Materials Research Society Proceeding. 1996, 435, 311.Google Scholar
6. Feher, F. J.; Newman, D. A.; Walzer, J. F. J. Am. Chem. Soc. 1989, 111, 1741–8.Google Scholar
7. Feher, F. J.; Budzichowski, T. A.; Blanski, R. L.; Weller, K. J.; Ziller, J. W. Organometallic. 1991, 10, 2526–8.Google Scholar
8. Brown, J. F.; Vogt, L. H. J. Am. Chem. Soc. 1965, 87, 4313–7.Google Scholar
9. Feher, F. J.; Terroba, R.; Ziller, J. W. Chem. Commun. 1999, 2153–4.Google Scholar
10. Feher, F. J.; Nguyen, F.; Soulivong, D.; Ziller, J. W. Chem. Commun 1999, 1705–6.Google Scholar
11. Feher, F. J.; Soulivong, D.; Nguyen, F. Chem. Commun. 1998, 1279–80.Google Scholar
12. Feher, F. J.; Soulivong, D.; Eklund, A. E. Chem. Commun. 1998, 399400.Google Scholar
13. Feher, F. J.; Terroba, R.; Ziller, J. W. Chem. Commun. 1999, 2309–10.Google Scholar
14. Feher, F. J.; Terroba, R.; Jin, R.-Z. Chem. Commun. 1999, 2513–4.Google Scholar
15. Frye, C. L. In Inorganic Reactions and Methods; Hagen, A. P., Ed.; VCH: Deerfield Beach, FL, 1986; Vol. 17, pp 105–16.Google Scholar
16. Lichtenhan, J. D.; Schwab, J. J., unpublished results.Google Scholar
17. Weidner, R.; Zeller, N.; Deubzer, B.; Frey, V.; Wacker-Chemie GmbH: U. S. Patent 5,047,492, 1991.Google Scholar
18. Harrison, P. G.; Hall, C.; Kannengiesser, R. Main Group Met. Chem. 1997, 20, 515–29.Google Scholar
19. Hasegawa, I.; Ishida, M.; Motojima, S. Synth. React. Inorg. Met.-Org. Chem. 1994, 24, 1099–110.Google Scholar
20. Agaskar, P. A. Coll. Surf. 1992, 63, 131–8.Google Scholar