Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T07:18:43.192Z Has data issue: false hasContentIssue false

Measurement Technique, Oxide Thickness and Area Dependence of Soft-Breakdown

Published online by Cambridge University Press:  10 February 2011

T. Nigam
Affiliation:
Bell-labs, Lucent Technologies, Murray Hill, NJ, IMEC, Leuven, Belgium.
R. Degraeve
Affiliation:
Bell-labs, Lucent Technologies, Murray Hill, NJ, IMEC, Leuven, Belgium.
G. Groeseneken
Affiliation:
Bell-labs, Lucent Technologies, Murray Hill, NJ, IMEC, Leuven, Belgium.
M. Heyns
Affiliation:
Bell-labs, Lucent Technologies, Murray Hill, NJ, IMEC, Leuven, Belgium.
H.E. Maes
Affiliation:
Bell-labs, Lucent Technologies, Murray Hill, NJ, IMEC, Leuven, Belgium.
Get access

Abstract

For sub-5 nm oxides there are two different stages for breakdown; soft breakdown (SBD) and hard breakdown (HBD). It has been shown that both SBD and HBD exhibit the same statistics. Therefore, the physical mechanism governing them is the same. The major difference between them is the energy transferred from the capacitor to the localized conducting path. In this paper, a simple equivalent circuit is proposed to explain the effect of the measurement technique, oxide thickness, and test structure area on the detection of soft breakdown. Also an inelastic quantum tunneling model is proposed to discuss the current-voltage characteristics after SBD. The model is also successful in explaining the temperature dependence of SBD IV characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]DiMaria, D. J., Cartier, E., and Arnold, D., J. Appl. Phys., 73, 7, pp. 33673384 (1993)Google Scholar
[2]Degraeve, R., Groeseneken, G., Bellens, R., Ogier, J. L., Depas, M., Roussel, P. J., and Maes, H. E., IEEE Trans. Electron Devices, 45, (4), pp. 904911 (1998)Google Scholar
[3]Depas, M., Nigam, T., and Heyns, M.M., IEEE Trans. Electron Devices, 30, (9), pp. 14991504 (1996)Google Scholar
[4]Halimaoui, A., Briere, O., and Ghibaudo, G., Microelectronic Engineering, 36, (1-4), pp. 157160 (1997)Google Scholar
[5]Okada, K., Kawasaki, S., Hirofuji, Y., Ext. Absr. of the 1994 SSDM, Yokohama, pp. 565567, (1994)Google Scholar
[6]Weir, B.E., Silverman, P.J., Monroe, D., Krisch, K.S., Alam, M. A., Alers, G.B., Sorsch, T.W., Timp, G.L., Bauman, F., Liu, C.T., Ma, Y., and Hwang, D., IEDM Tech. Dig., pp. 7376 (1997)Google Scholar
[7]Alers, G.B., Weir, B.E., Alam, M. A., Timp, G.L. and Sorsch, T.W. Int. Rel. Phys. Sym. Proceedings, pp.7679, (1998)Google Scholar
[8]Yashida, T., Miyazaki, S., and Hirose, M., Ext. Absr. of the SSDM, pp. 539541, (1996)Google Scholar
[9]Okada, K., and Taniguchi, K.Appl. Phys. Lett., 70, (3), pp. 351353 (1997)Google Scholar
[10]Houssa, M., Nigam, T., Mertens, P. W., and Heyns, M. M., Appl. Phys. Lett., 73, (-), pp. 514516 (1998)Google Scholar
[11] Single Charge tunneling: Coulomb blockade Phenomena in Nanostructures NATO ASI Series 1992. Edited by Grabert, H., and Devoret, M. H..Google Scholar
[12]Kamakura, Y., Sakura, T., Okada, K. et al. Dielectric Workshop, Tokyo, Japan, 1999Google Scholar