Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T20:13:31.011Z Has data issue: false hasContentIssue false

Measuring Residual Stress on the Nanometer Scale - Novel Tools for Fundamental and Applied Research

Published online by Cambridge University Press:  10 February 2012

R. B. Wehrspohn
Affiliation:
Fraunhofer Institute for Mechanics of Materials IWM, Walter-Huelse-Str.1, 06120 Halle, Germany
M. Krause
Affiliation:
Fraunhofer Institute for Mechanics of Materials IWM, Walter-Huelse-Str.1, 06120 Halle, Germany
C. Schriever
Affiliation:
Martin-Luther-University Halle-Wittenberg, μMD Group/Institute of Physics, Heinrich-Damerow-Str. 4, 06120 Halle, Germany
Get access

Abstract

In the present paper, strain measurements based on second harmonic generation (SHG) and electron backscatter diffraction (EBSD) is demonstrated via two illustrative applications. While SHG gains access to strains in buried interfaces, EBSD can be used to measure strains in crystalline thin films with high spatial resolution on the order of tens of nanometers and high surface sensitivity. In addition, target preparation using low-voltage ion beam milling is demonstrated, gaining access to unstrained sample positions in strained silicon on insulator (sSOI) systems which are necessary for common “pattern-shift” methodologies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] MacDowell, A. et al. ., Nuclear Instruments & Methods in Physics Research A 467-468, 936943 (2001)Google Scholar
[2] Pfeifer, M., Williams, G., Vartanyants, I., Harder, R., Robinson, I., Nature 442, 63 (2006)Google Scholar
[3] Gailhanou, M., Loubens, A., Micha, J., Charlet, B., Minkevich, A., Fortunier, R., Thomas, O., Appl. Phys. Lett. 90, 111914 (2007)Google Scholar
[4] Fienup, J., Appl. Opt. 21, 2758 (1982)Google Scholar
[5] Zhao, W., Duscher, G., Rozgonyi, G., Zikry, M. A., Chopra, S. and Ozturk, M. C., Appl. Phys. Lett. 90, 91907 (2007)Google Scholar
[6] Usuda, K., Numata, T., Irisawa, T., Hirashita, N. and Takagi, S., Mat. Sci. Engng. B 124, 143147 (2005)Google Scholar
[7] Houdellier, F., Roucau, C., Clément, L., Rouvière, J.-L. and Casanove, M.-J., Ultramicroscopy 106, 951959 (2006)Google Scholar
[8] Hÿtch, M. J., Snoeck, E. and Kilaas, R., Ultramicroscopy 74, 131146 (1998)Google Scholar
[9] Hÿtch, M. J., Houdellier, F., Hüe, F., and Snoeck, E., Nature 453, 10861089 (2008)Google Scholar
[10] Becker, M., Sarau, G., . Christiansen, S in Mechanical Stress on the Nanoscale: Simulation, Material Systems and Characterization Techniques, Whiley-VCH Verlag GmbH (2011).Google Scholar
[11] Tarun, A., Hayazawa, N., Kawata, S., Anal. Bioanal. Chem. 394, 17751785 (2009)Google Scholar
[12] Hanbücken, M., Müller, P., Wehrspohn, R. B., Mechanical Stress on the Nanoscale: Simulation, Material Systems and Characterization Techniques, Whiley-VCH Verlag GmbH (2011)Google Scholar
[13] Schriever, C., Bohley, C., Wehrspohn, R. B., Opt. Lett. 35, 273275 (2010)Google Scholar
[14] Sipe, J. E., Moss, D. J., van Driel, H. M., Phys. Rev. B 35, 1129 (1987)Google Scholar
[15] Govorkov, S. V., Emel’yanov, V. I., Koroteev, N. I., Petrov, G. I., Shumay, I. L., Yakovlev, V. V., J. Opt. Soc. Am. B 6, (1989),1171123 Google Scholar
[16] Krause, M., Petzold, M., Wehrspohn, R. B. in Mechanical Stress on the Nanoscale: Simulation, Material Systems and Characterization Techniques, Whiley-VCH Verlag GmbH (2011)Google Scholar
[17] Wilkinson, A. J., Meaden, G., Dingley, D. J., Ultramicroscopy 106, 307313 (2006)Google Scholar