Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T06:45:18.497Z Has data issue: false hasContentIssue false

Mechanical Behavior of Rigid Rod Polymeric Fibers

Published online by Cambridge University Press:  26 February 2011

Steven R. Allen
Affiliation:
Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
Richard J. Farris
Affiliation:
Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003
Get access

Abstract

Poly-(p-phenylene benzobisthiazole) fibers provide a model system for the evaluation of structure-property relationships in extended-chain polymeric fibers. Owing to the poorly developed lateral order in as-spun fibers, the enhancement of structural perfection and of mechanical properties may be examined through heat treatment processing more readily than with more crystalline fibers. High tensile modulus (to 300 GPa) and high tensile strength (3 GPa) have been obtained from heat treatment processing of the fibers. The development of tensile modulus and tensile strength depends directly on the enhancement of overall axial molecular orientation. Tensile strength is additionally dominated by the development of stronger lateral molecular interaction. The mechanical properties mimic the inherent chain anisotropy arising from strong primary bonding along the chain and much weaker secondary interactions between chains. Tensile to shear moduli ratios of 200:1, tensile to shear strength ratios of 50:1 and tensile to compressive strength ratios of 10:1 are observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Allen, S. R., Filippov, A. G., Farris, R. J., Thomas, E. L., Wong, C., Berry, G. C. and Chenevey, E. C., Macromolecules 14 1135, 1981.CrossRefGoogle Scholar
2. Adams, W. W., Azaroff, L. V. and Kulshreshtha, A. K., Z. Krist. 150 321, 1979.Google Scholar
3. Roche, E. J., Takahashi, T. and Thomas, E. L., Amer. Chem. Soc. Symp. Fiber Diffraction Methods 141 303, 1980.Google Scholar
4. Minter, J. R., PhD thesis, University of Massachusetts, Amherst, 1982.Google Scholar
5. Odell, J. A., Keller, A., Atkins, E. D. T. and Miles, J., J. Mater. Sci. 16 3309, 1981.CrossRefGoogle Scholar
6. Minter, J. R., Shimamura, K. and Thomas, E. L., ibid. 16 3303, 1981.Google Scholar
7. Shimamura, K., Minter, J. R. and Thomas, E. L., ibid. 18 54, 1983.Google Scholar
8. Allen, S. R., PhD thesis, University of Massachusetts, Amherst, 1983.Google Scholar
9. Pottick, L. A., PhD thesis, University of Massachusetts, Amherst, 1986 Google Scholar
10. Allen, S. R., Farris, R. J. and Thomas, E. L., J. Mater. Sci. 20 2727, 1985.Google Scholar
11. ibid. 20 4583, 1985.Google Scholar
12. Pottick, L. A., Allen, S. R. and Farris, R. J., J. Appl. Polym. Sci. 29 3915, 1984.Google Scholar
13. Pottick, L. A. and Farris, R. J., Polym. Eng. Sci. 25 284, 1985.Google Scholar
14. Allen, S. R., Filippov, A. G., Farris, R. J. and Thomas, E. L., Chapter 9 in The Strength and Stiffness of Polymers, Porter, R. S. and Zachariades, A. E. editors, Marcel Dekker, New York, 1983.Google Scholar
15. DeTeresa, S. J., Allen, S. R., Farris, R. J. and Porter, R. S., J. Mater. Sci. 19 57, 1984.Google Scholar
16. Allen, S. R., J. Mater. Sci. 22 853, 1987.Google Scholar
17. DeTeresa, S. J., PhD thesis, University of Massachusetts, Amherst, 1985.Google Scholar
18. DeTeresa, S. J., Farris, R. J. and Porter, R. S., J. Mater. Sci. 20 1645, 1985.Google Scholar
19. DeTeresa, S. J., Porter, R. S. and Farris, R. J., J. Mater. Sci. 23 1886, 1988.Google Scholar
20. Allen, S. R., Polymer 29 1091,1988.Google Scholar