Published online by Cambridge University Press: 10 February 2011
To provide comparative assessment for bulge test and indentation mechanical properties, titanium nitride (TiNx) thin films deposited in a r.f. magnetron sputtering system were subjected to both measurements. For this purpose thin layers of titanium nitride (t = 400–700 nm) were grown on the Si(100) wafers containing a layer of free standing low stress (LPCVD) silicon nitride. The composite membranes made of silicon nitride and TiNx were bulged and by means of the rule of mixture formula the mechanical properties of TiNx thin films were extracted. These measurements allowed to investigate the variation of Young's modulus, hardness, and residual stresses of TiNx films versus deposition parameters such as the nitrogen partial pressure and substrate bias voltage. It was found that, at low negative bias (≤ -15 V) stoichiometric thin films of low density and in tensile stress are deposited. Increasing the negative bias increases the initially tensile residual stress to a maximum, then drops to zero and converts to the compressive stress which grows again with further negative bias. At the same time, both modulus and hardness rise monotonously with the substrate bias without any abrupt changes. The nanoindentation modulus extracted from dynamically loading-unloading curves was found to be comparable to the bulge test measurements for denser coatings, but noticeably higher than the bulge test data for porous coatings. The morphology of TiNx films were observed using scanning electron microscopy and the relationships between microstructural evolution of columns and the mechanical properties of coatings are discussed in terms of deposition parameters.