Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T07:18:43.973Z Has data issue: false hasContentIssue false

Mechanism of Unirradiated UO2 (S) Dissolution in Nacl and Mgcl2 Brines at 25°C

Published online by Cambridge University Press:  15 February 2011

Joan de Pablo
Affiliation:
Department of Chemical Engineering. Universitat Politècnica de Catalunya E-08028 Barcelona, Spain.
J. Giménez
Affiliation:
Department of Chemical Engineering. Universitat Politècnica de Catalunya E-08028 Barcelona, Spain.
M. E. Torrero
Affiliation:
Department of Chemical Engineering. Universitat Politècnica de Catalunya E-08028 Barcelona, Spain.
I. Casas
Affiliation:
Department of Chemical Engineering. Universitat Politècnica de Catalunya E-08028 Barcelona, Spain.
Get access

Abstract

The dissolution of unirradiated UO2 (s) has been studied in NaCl and MgCl2 brines under both reducing and oxidizing conditions.

The initial uranium release under reducing conditions has been attributed to the dissolution of an initial oxidized layer. The final uranium concentrations have been modeled by using the PHRQPITZ computer program giving the solubility of the solid phase UO2 (s).

Under oxidizing conditions, the initial release is the sum of the oxidized layer dissolution and the oxidation/dissolution of the UO2. The release rates calculated are 1.4·10−5 mol d−1 m−2 in NaCl2-brine and 3.6·10−5 mol d−1 m−2 in MgCl2-brine. After the initial release, uranium concentration in the NaCI-brine reaches a constant value, which has been attributed to the formation of a secondary solid phase. In MgCl2-brine, the uranium concentration increases slowly indicating, in this case, no control by secondary phase formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Thomas, G.F. and Till, G., Nucl. Chem. Waste Manag. 5, 141 (1984).Google Scholar
2. Christensen, H., in Scientific Basis for Nuclear Waste Management XIV, edited by Abrajano, T. Jr and Johnson, L.H. (Mater. Res. Soc. Symp. Proc. 212, Pittsburgh, PA 1991) pp 213220.Google Scholar
3. Shoesmith, D.W., Sunder, S., Johnson, L.H. and Bailey, M.G., in Scientific Basis for Nuclear Waste Management IX, edited by Werme, L.O. (Mater. Res. Soc. Symp. Proc. 50, Pittsburgh, PA 1985) pp 309316.Google Scholar
4. Casas, I., Giménez, J., Marti, V., Torrero, M.E. and de Pablo, J., in Scientific Basis for Nuclear Waste Management XVI, edited by Interrante, Ch.G. and Pabalan, R.T. (Mater. Res. Soc. Symp. Proc. 294, Pittsburgh, PA 1993) pp 6166.Google Scholar
5. Shoesmith, D.W., Sunder, S., Bailey, M.G. and Wallace, G.J., Corrosion Sci. 29, 1115 (1989).Google Scholar
6. Wang, R. and Katayama, Y.B., Nucl. Chem. Waste Manag. 3, 83 (1982).Google Scholar
7. Brodda, B. -G. and Merz, E.R., Radiochim. Acta 44/45, 3 (1988).Google Scholar
8. Casas, I., Gimenez, J., de Pablo, J. and Torrero, M.E., in Scientific Basis for Nuclear Waste Management XVI, edited by Interrante, Ch.G. and Pabalan, R.T. (Mater. Res. Soc. Symp. Proc. 294, Pittsburgh, PA 1993) pp 6772.Google Scholar
9. Torrero, M.E., Casas, I., J. de Pablo, A. Sandino and B. Grambow, Radiochim. Acta (1994) in press.Google Scholar
10. Sandino, A. and Grambow, B., Radiochim. Acta (1994) in pressGoogle Scholar
11. Plummer, L.N., Parkhurst, D.L., Fleming, G.W. and Dunkle, S.A.. A computer program incorporating Pitzer’s equations for calculation of geochemical reactions in brines. U.S. Geological Survey, Water-Resources Investigations Report 884153 (1988).Google Scholar
12. Robbins, J.C., Can. Inst. Min. Metall. Bull. 71, 61 (1978).Google Scholar
13. de Pablo, J., Duro, L., Giménez, J., Havel, J., Torrero, M.E. and Casas, I., Anal. Chim. Acta 264, 115 (1992).Google Scholar
14. Grenthe, I., Fuger, J., Lemire, R., Müller, A.B., Nguyen-Trung, C., Wanner, H., Chemical Thermodynamics of Uranium, edited by Wanner, H. and Forest, I. (Elsevier Science Publishers, Amsterdam, 1992).Google Scholar
15. Bruno, J. and Puigdomenech, I., in Scientific Basis for Nuclear Waste Management XII, edited by Lutze, W. and Ewing, R.C. (Mater. Res. Soc. Symp. Proc. 127, Pittsburgh, PA 1989) pp 887896.Google Scholar
16. Pitzer, K.S., Peterson, J.R. and Silvester, L.F., J. Solution Chem. 7, 45 (1978).Google Scholar
17. Torrero, M.E., Casas, I., Aguilar, M., de Pablo, J., Gimenez, J. and Bruno, J., in Scientific Basis for Nuclear Waste Management XIV, edited by Abrajano, T. Jr. and Johnson, L.H. (Mater. Res. Soc. Symp. Proc. 212, Pittsburgh, PA 1991) pp 229234.Google Scholar
18. Choppin, G.R. and Mathur, J.N., Radiochim. Acta 52/53, 25 (1991).Google Scholar
19. Silva, R.J., in Scientific Basis for Nuclear Waste Management XV, edited by Sombret, R.C.G. (Mater. Res. Soc. Symp. Proc. 257, Pittsburgh, PA 1992) pp 323330.Google Scholar