Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T09:00:29.440Z Has data issue: false hasContentIssue false

The Medium-Depending Fluorescence of Quadrupolar Donor-Acceptor-Donor Substituted Distyrylbenzenes with High Two-Photon Absorption Cross-Sections

Published online by Cambridge University Press:  01 February 2011

Heiner Detert
Affiliation:
detert@mail.uni-mainz.de, Johannes Gutenberg-Universität Mainz, Institut für Organische Chemie, Duesbergweg 10 - 14, Mainz, Rheinland-Pfalz, 55099, Germany, ++49-6131-3922111
Volker Schmitt
Affiliation:
volkerschmitt@aol.com, Johannes Gutenberg-Universität Mainz, Institut für Organische Chemie, Duesbergweg 10 - 14, Mainz, Rheinland-Pfalz, 55099, Germany
Stefan Glang
Affiliation:
stglang@arcor.de, Johannes Gutenberg-Universität Mainz, Institut für Organische Chemie, Duesbergweg 10 - 14, Mainz, Rheinland-Pfalz, 55099, Germany
Get access

Abstract

1,4-Distyrylbenzenes with terminal dialkylamino groups and a central 2,5-disubstitution with electron-accepting groups were prepared via twofold Horner-olefination. These chromophores with a quadrupolar donor-acceptor-donor substitution and C2-symmetry absorb in the violet to green region of the visible spectrum exhibit large two-photon-absorption cross-sections when irrdiated in the NIR. Whereas a variation of the solvent polarity only slightly alters the absorption spectra, the fluorescence appears to be highly responsive. Besides a positive solvatochromism, the emission is very sensitive towards protonation. Quenching or appearance of new emitting species depends on the substitution pattern and is controlled by the concentration of the acid.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kraft, A., Grimsdale, A. C., and Holmes, A. B., Angew. Chem. 110, 416 (1998); Angew. Chem., Int. Ed.. 37, 402 (1998).Google Scholar
2 Müllen, K, Wegner, G. Electronic Materials: The Oligomer Approach, (Wiley-VCH: Weinheim, New York, 1998), and references therein.Google Scholar
3 Wolff, J., and Wortmann, R., J. Prakt. Chem. 340, 99 (1998).Google Scholar
4 Strehmel, B., Sarker, A. M. and Detert, H., ChemPhysChem. 4, 249 (2003).Google Scholar
5 Lange, B., Zentel, R., Ober, C. and Marder, S., Chem. Mater. 16, 5286 (2004).Google Scholar
6 Molecular geometries and transitions were calculated with AM1 and INDO/S, WinMOPAC.Google Scholar
7 Klessinger, M. and Michl, J., “Lichtabsorption und Photochemie organischer Moleküle” (VCH: Weinheim, New York, 1989) p 220.Google Scholar
8 Förster, Th., Z. Elektrochem. 54, 42 (1950).Google Scholar
9 Stalmach, U. and Detert, H., J. Prakt. Chem. 342, 10 (2000).Google Scholar