Published online by Cambridge University Press: 15 February 2011
The cellular microstructure of insect scales can be detailed intricately with threedimensional structures and multiple thin-film layers. In butterflies, iridescent scales can reflect bright colors through thin-film interference and other optical phenomena; the balance of radiation is absorbed for thermoregulatory purposes. Results of numerical and experimental investigations into the function, properties, and structure of these scales are presented. Of particular interest are the numerical modeling of the microscale radiative effects in the scales, determining the optical properties of the biological material, and the cellular development of thin-film structures.