Hostname: page-component-5f745c7db-8qdnt Total loading time: 0 Render date: 2025-01-06T07:06:07.490Z Has data issue: true hasContentIssue false

Microscopic Structure of Er-Related Optically Active Centers in Si

Published online by Cambridge University Press:  10 February 2011

H. Przybylinska
Affiliation:
Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, PL-02 668 Warsaw, Poland
N. Q. Vinh
Affiliation:
Van der Waals–Zeeman Institute, University of Amsterdam, Valckenierstraat 65, NL-1018 XE Amsterdam, The Netherlands
B.A. Andreev
Affiliation:
Institute for Physics of Microstructures, GSP-105, 603600 Nizhny Novgorod, Russia
Z. F. Krasil'nik
Affiliation:
Institute for Physics of Microstructures, GSP-105, 603600 Nizhny Novgorod, Russia
T. Gregorkiewicz
Affiliation:
Van der Waals–Zeeman Institute, University of Amsterdam, Valckenierstraat 65, NL-1018 XE Amsterdam, The Netherlands
Get access

Abstract

A successful observation and analysis of the Zeeman effect on the near 1.54 μm photoluminescence spectrum in Er-doped crystalline MBE-grown silicon are reported. A clearly resolved splitting of 5 major spectral components was observed in magnetic fields up to 5.5 T. Based on the analysis of the data the symmetry of the dominant optically active center was conclusively established as orthorhombic I (C2v), with g‼≈18.4 and g⊥≈0 in the ground state. The fact that g⊥≈0 explains why EPR detection of Er-related optically active centers in silicon may be difficult. Preferential generation of a single type of an optically active Er-related center in MBE growth confirmed in this study is essential for photonic applications of Si:Er.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Coffa, S. et al., Mater. Res. Bull. 23, 25 (1998).Google Scholar
2. Palm, J. et al., Phys. Rev. B 54, 17603 (1996).Google Scholar
3. Adler, D. L. et al., Appl. Phys. Lett. 61, 2181 (1992).Google Scholar
4. Terrasi, A. et al., Appl. Phys. Lett. 70, 1712 (1997)Google Scholar
5. Wahl, U. et al., Phys. Rev. Lett. 79, 2069 (1997).Google Scholar
6. Needels, M. et al., Phys. Rev. B 47, 15 533 (1993).Google Scholar
7. Carey, J. D. et al., Phys. Rev. B 59, 2773 (1999).Google Scholar
8. Przybylinska, H. et al., Phys. Rev. B 54, 2532 (1996).Google Scholar
9. Andreev, B. A. et al., J. Cryst. Growth 201/202, 534 (1999); M.V. Stepikhova et al., Thin Solid Films 369, 426 (2000).Google Scholar
10. Vinh, N.Q. et al., Phys. Rev. Lett. 90, 66401 (2003)Google Scholar
11. Abragam, A. and Bleaney, B., Electron Paramagnetic Resonance of Transition Metal Ions, Clarendon Press, Oxford 1970 Google Scholar
12. Watts, R. K. and Holton, W.C., Phys. Rev. 173, 417 (1968).Google Scholar
13. Kingsley, J. D. and Aven, M., Phys. Rev. 155, 235 (1967).Google Scholar
14. Raffa, A.G. and Ballone, P., Phys. Rev. B 65, 121309 (2002).Google Scholar