Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-02T21:24:20.363Z Has data issue: false hasContentIssue false

Microstructural Evolution of Dual Multi-Phase Intermetallic Alloys Composed of GCP Ni3Al and Ni3V Phases Containing Ti

Published online by Cambridge University Press:  26 February 2011

Takayuki Takasugi
Affiliation:
takasugi@mtr.osakafu-u.ac.jp, Osaka Prefecture University, Department of Materials Science, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531, Japan, 81-72-254-9314, 81-72-254-9912
Yasuyuki Kaneno
Affiliation:
kaneno@mtr.osakafu-u.ac.jp, Osaka Prefecture University, Department of Materials Science, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
Hiroshi Tsuda
Affiliation:
tsuda@mtr.osakafu-u.ac.jp, Osaka Prefecture University, Department of Materials Science, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
Get access

Abstract

The microstructural evolution of intermetallic alloys, which have dual two-phase microstructure composed of Ni3Al (L12) and Ni3V (D022) phases, was investigated as a function of aging time at 1273K by TEM. At early aging time, the lower microstructure showed structurally decomposed clusters composed of L12 phase and three D022 variant structures. With proceeding aging time, the decomposed L12 and D022 phases coarsened and transformed to lamellar-like microstructures. At longer aging time, the L12 phase disappeared from the lamellar-like microstructure and alternatively the D022 phase composed of two different variant structures prevailed over the lamellar-like microstructures. Corresponding to this microstructural change, the direction of the lamellar and its interfacial plane rotated from <001> to <011> and from {001} to {011}, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nunomura, Y., Kaneno, Y., Tsuda, H. and Takasugi, T., Intermetallics 12, 389 (2004).Google Scholar
2. Nunomura, Y., Kaneno, Y., Tsuda, H. and Takasugi, T., Acta Mater. 54, 851 (2006).Google Scholar
3. Shibuya, S., Kaneno, Y., Yoshida, M. and Takasugi, T., Acta Mater. 54, 861 (2006).Google Scholar
4. Shibuya, S., Kaneno, Y., Yoshida, M., Shishido, T. and Takasugi, T., Intermetallics, 15, 119 (2004).Google Scholar
5. Pearson, W. B., A handbook of lattice spacing and structures of metals and alloys, Pergamon press, London; 1958. p.378.Google Scholar
6. Villars, P. and Calvert, L. D., Pearson's handbook of crystallography data for intermetallic phases, vol. 3. Metals Park (OH):ASM; 1986. p.2907.Google Scholar
7. Tanner, L. E., Phys. Stat. Sol. 30, 685 (1968).Google Scholar
8. Sihgh, J. B., Sundararaman, M., Mukhopadhyay, P. and Prabhu, N., Scripta Mater. 48, 261 (2003).Google Scholar
9. Sihgh, J. B., Sundararaman, M., Mukhopadhyay, P. and Prabhu, N., Intermetallics 11, 83 (2003).Google Scholar
10. Suzuki, A., Kojima, H., Matsuo, T. and Takeyama, M., Intermetallics 12, 969 (2004).Google Scholar
11. Bendersky, L. A., Biancaniello, F. S. and Williams, M. E., J Mater. Res. 9, 3068 (1994).Google Scholar
12. Takeyama, M. and Kikuchi, M., Intermetallics 6, 573(1998).Google Scholar
13. Tanimura, M., Kikuchi, M. and Koyama, Y., J Physics: Condensed Matter 14, 7053 (2002).Google Scholar
14. Miyazaki, T., Seki, K., Doi, M. and Kozakai, T., Mater. Sci. Eng. A 77, 125 (1986).Google Scholar
15. Miyazaki, T. and Doi, M., Mater. Sci. Eng. A 110, 175 (1989).Google Scholar
16. Johnson, W. C. and Chan, J. W., Acta Metall. 32, 1925 (1984).Google Scholar
17. Kawasaki, K. and Enomoto, Y., Physica A 150, 463 (1988).Google Scholar