Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T06:57:16.207Z Has data issue: false hasContentIssue false

Microstructural Evolution of Epitaxial LiNbO3 Thin Films Derived From Metal Alkoxide Solutions

Published online by Cambridge University Press:  25 February 2011

Keiichi Nashimoto
Affiliation:
On leave from Fuji Xerox Co., Ltd., 3–3–5, Akasaka, Tokyo, JAPAN
Michael J. Cima
Affiliation:
Ceramics Processing Research Laboratory Massachusetts Institute of Technology Cambridge, MA 02139
Wendell E. Rhine
Affiliation:
Ceramics Processing Research Laboratory Massachusetts Institute of Technology Cambridge, MA 02139
Get access

Abstract

The evolution of the microstructure of sol-gel derived LiNbO3 thin films was investigated to understand the growth of epitaxial films. LiNbO3 films were prepared from a precursor solution of lithium ethoxide and niobium pentaethoxide. Prehydrolysis promoted the development of polycrys-talline LiNbO3 films, whereas nonhydrolysis produced solid-state epitaxial growth of LiNbO3 films on sapphire substrates. Although the films looked smooth after annealing at 400°C, the morphology of the films changed, depending on substrates and precursors, due to grain growth at high annealing temperature. Prehydrolysis of the alkoxides caused a decrease in the temperature at which grain growth occurred, whereas the film prepared from the nonhydrolyzed precursor on a sapphire substrate showed denser texture and contained abnormally large domains that appeared to be single phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kondo, S., Miyazawa, S., Fushimi, S., and Sugii, K., Appl. Phys. Lett. 26, 489 (1975).Google Scholar
2. Miyazawa, S., Appl. Phys. Lett. 23, 198 (1973).Google Scholar
3. Fushimi, S. and Sugii, K., Japn. J. Appl. Phys. 13, 1895 (1974).Google Scholar
4. Takada, S., Ohnishi, M., Hayakawa, H., and Mikoshiba, N., Appl. Phys. Lett. 24, 490 (1974).Google Scholar
5. Betts, R.A. and Pitt, C.W., Electron. Lett. 21, 960 (1985).Google Scholar
6. Fukushima, J., Kodaira, K., and Matsushita, T., Am. Ceram. Soc. Bull. 55, 1064 (1976).Google Scholar
7. Budd, K.D., Dey, S.K., and Payne, D.A., Brit. Ceram. Soc. Proc. 36, 107 (1985).Google Scholar
8. Dey, S.K., Budd, K.D., and Payne, D.A., IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 35, 80 (1988).Google Scholar
9. Eichorst, DJ. and Payne, D.A., Mat. Res. Soc. Symp. Proc. 121, 773 (1988).Google Scholar
10. Partlow, D.P. and Greggi, J., J. Mat. Res. 2, 595 (1987).Google Scholar
11. Chen, C., Ryder, D.F. Jr., and Spurgeon, W.A., J. Am. Ceram. Soc. 72, 1495 (1989).Google Scholar
12. Yamashita, H., Yoko, T., and Sakka, S., J. Ceram. Soc. Jpn. 98 913 (1990).Google Scholar
13. Hirano, S. and Kato, K., Adv. Ceram. Mat. 3, 503 (1988).Google Scholar
14. Miller, K.T. and Lange, F.F., Mat. Res. Soc. Symp. Proc. 155, 191 (1989).Google Scholar
15. Nashimoto, K. and Cima, M.J., to be published in Mater. Lett.Google Scholar
16. Thompson, C.V. and Smith, H.I., Appl. Phys. Lett. 44, 603 (1984).Google Scholar