Published online by Cambridge University Press: 01 February 2011
Usually, single-phase intermetallics in bulk form can easily be crushed into powder by hammering. It was therefore quite a surprise when we found that a bulk sample of the monoclinic intermetallic compound Nb2Co7 could be extensively deformed at room temperature without shattering or fracturing. In a previous paper, results of microhardness, compression, tensile and bending tests were provided and discussed [1]. In order to understand the observed unusual deformation behavior of this intermetallic phase, its hitherto unknown crystal structure has been studied and the microstructure of undeformed and deformed samples has been analyzed in the present investigation by light-optical, scanning electron and transmission electron microscopy. Single-phase specimens deformed at very different strain rates (hammering and conventional compression testing) both show the occurrence of microcracks along grain boundaries which, in compression-deformed specimens, are strongly localized in extended shear bands oriented approximately 45° to the compression axis. The grains adjacent to the microcracks are heavily deformed whereas, away from the sheared regions, the samples remain free of any indication of plastic deformation.