Published online by Cambridge University Press: 17 June 2013
An important property of thin film silicon and related materials is the microstructure which may involve the presence of interconnected and isolated voids. We report on effusion measurements of implanted helium (He) to detect such voids. Several series of hydrogenated and unhydrogenated amorphous silicon films prepared by the methods of plasma deposition, hot wire deposition and vacuum evaporation were investigated. The results show common features like a He effusion peak at low temperatures attributed to He out-diffusion through a compact material or through interconnected voids, and a He effusion peak at high temperatures attributed to He trapped in isolated voids. While undoped plasma-grown device-grade hydrogenated amorphous silicon (a-Si:H) films show a rather low concentration of such isolated voids, its concentration can be rather high in doped a-Si:H, in unhydrogenated evaporated material and others.