Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-29T13:02:46.876Z Has data issue: false hasContentIssue false

Microstructure Characterization of Textured Nickel Using Parameters of Extinction

Published online by Cambridge University Press:  01 February 2011

A. Cadena Arenas
Affiliation:
Instituto Politécnico Nacional-ESFM, Av. IPN, Ed. 9, U.P.A.L.M., 07738, México, D. F. México.
T. Kryshtab
Affiliation:
Instituto Politécnico Nacional-ESFM, Av. IPN, Ed. 9, U.P.A.L.M., 07738, México, D. F. México.
J. Palacios Gómez
Affiliation:
Instituto Politécnico Nacional-ESFM, Av. IPN, Ed. 9, U.P.A.L.M., 07738, México, D. F. México.
G. Gómez Gasga
Affiliation:
Instituto Politécnico Nacional-ESFM, Av. IPN, Ed. 9, U.P.A.L.M., 07738, México, D. F. México.
A. De Ita de la Torre
Affiliation:
Area of Material Science, UAM-Unidad Azcapotzalco, Av. San Pablo #180, 02200, México, D. F., México.
A. Kryvko
Affiliation:
Instituto Politécnico Nacional-ESIME Zacatenco, Av. IPN, Ed. 5, U.P.A.L.M., 07360, México, D.F. México. camirdena@yahoo.com.mx, tkrysh@esfm.ipn.mx
Get access

Abstract

X ray diffraction (XRD) is the common technique for texture analysis by means of pole figure (PF) measurement. PF reflects the grains orientation distribution but contains no information about grain microstructure. The reflected intensity can be affected by the extinction phenomenon that reduces the pole density (PD). The parameters of extinction are related to the crystal microstructure. The parameter of the primary extinction is connected with domain size and parameter of the secondary extinction is related to the angle of domains disorientation that depends on dislocation density in domain boundary. An original XRD method is proposed for correction of PD, considering extinction phenomenon, and separation of the extinction parameters in the case of textured aluminum. The problem is solved under some assumptions. In the present work cold rolled nickel with and without annealing at 600 °C is investigated. The validity of the proposed assumptions for Ni is evaluated in terms of the extinction length. The corrected PD in the maximum of PF and the parameters of the primary and secondary extinction are calculated using the first order reflection for Cu Kα- and Co Kα- radiations and the second order reflection for one of the used wavelengths. Both in cold rolled sample without annealing and in the annealed sample the primary and secondary extinctions are present simultaneously. According to the obtained parameters of extinction the microstructure of textured nickel is evaluated and their modification at the annealing process is demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kocks, U. F., Tomé, C. N. and Wenk, H.R.. Texture and Anisotropy, Cambridge University Press (1998).Google Scholar
2. Randle, V. and Engler, O.. Introduction to Texture Analysis Macrotexture, Microtexture and Orientation Mapping, Gordon and Beach Science Publisher, Amsterdam (2000).Google Scholar
3. Mucklich, A., Klimanek, P. Mater. Sci. Forum. 157–162, 275 (1994).Google Scholar
4. Yamakov, V., Tomov, I. J. Appl. Cryst. 32, 300 (1999).Google Scholar
5. Krivoglaz, M.A.. X-Ray and Neutron Scattering in Nonideal Crystals (Springer Verlag, Berlin–Heidelberg - New York, 1996).Google Scholar
6. Authier, A., Balibar, F., and Epelboin, Y., Phys. Stat. Sol. 41, 225 (1970).Google Scholar
7. Indenbom, V.L. and Kaganer, V.M., Phys. Stat. Sol. (a) 87, 253 (1985).Google Scholar
8. James, R.W.. The Optical Principles of the Diffraction of X-Rays (3rd ed. London: G., Bell, 664 (1965).Google Scholar
9. Zachariasen, W.H., Acta Cryst. 16, 1139 (1963).Google Scholar
10. Zachariasen, W.H., Acta Cryst. 23, 558 (1967).Google Scholar
11. Kryshtab, T., Palacios-Gómez, J., Mazin, M., and Gómez-Gasga, G.. Acta Materialia 52/10, 3027 (2004).Google Scholar
12. International Tables for X-ray Crystallography (Dordrecht, Boston, London: Kluwer Acad. Publ., 1992).Google Scholar
13. Pinsker, Z.G., Dynamical Scattering of X-Rays in Crystals (Springer-Verlag, Berlin- Heidelberg - New York, 1978).Google Scholar
14. Larson, I.A. and Corey, C.L., J. Appl. Phys. 40 2708 (1969).Google Scholar