Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T23:50:58.040Z Has data issue: false hasContentIssue false

Mocvd Zinc Oxide Films for Wide Bandgap Applications

Published online by Cambridge University Press:  01 February 2011

C.E. Rice
Affiliation:
Structured Materials Industries, Inc., 201 Circle Drive North, Unit 102/103, Piscataway, NJ 08854-3908 www.structruredmaterials.com
G.S. Tompa
Affiliation:
Structured Materials Industries, Inc., 201 Circle Drive North, Unit 102/103, Piscataway, NJ 08854-3908 www.structruredmaterials.com
L.G. Provost
Affiliation:
Structured Materials Industries, Inc., 201 Circle Drive North, Unit 102/103, Piscataway, NJ 08854-3908 www.structruredmaterials.com
N. Sbrockey
Affiliation:
Structured Materials Industries, Inc., 201 Circle Drive North, Unit 102/103, Piscataway, NJ 08854-3908 www.structruredmaterials.com
J. Cuchiaro
Affiliation:
Structured Materials Industries, Inc., 201 Circle Drive North, Unit 102/103, Piscataway, NJ 08854-3908 www.structruredmaterials.com
Get access

Abstract

ZnO is a wide bandgap (3.2 eV) semiconductor with potential application in LEDs, lasers, and transparent transistors, among other uses. These applications require uniform thickness, high quality materials (amorphous, poly- or single crystal), pinhole- and defect-free-single-and multilayer-conformal coatings. These attributes are generally best achievable by MOCVD. We have mounted a significant effort to develop automated MOCVD systems and process technologies for single and multicomponent oxides. The reactors use high speed rotation and are of a vertical orientation built to all metal UHV standards. We have demonstrated reactor scaled performance from 3” to 12” diameter depositions planes with modeling scales through 24” diameter. Metalorganics are used for zinc and dopant sources as well as dopant gases to optimize performance at low pressures. In this paper we will discuss our most recent results with epitaxial ZnO films, achievements in p-type doping, multilayer structures, and polycrystalline doped ZnO films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1For ZnO bulk crystals see www.cermetinc.comGoogle Scholar
2 Watanabe, M., Jpn. J. Appl. Phys. 9, 418 (1970).Google Scholar
3 Lau, W.S., J. Vac. Sci. Technol. A 6, 2015 (1988).Google Scholar
4 Igasaki, Y. and Saito, H., J. Appl. Phys. 70, 3612 (1991).Google Scholar
5 Kohiki, S., Nishitani, M., and Wada, T., J. Appl. Phys. 75 (4), 2069 (1994).Google Scholar
6 Webb, J.B., Willams, D.F., and Buchanan, M., Appl. Phys. Lett. 39, 640 (1981).Google Scholar
7 Kim, H.K. and Mather, M., Appl. Phys. Lett. 61, 2524 (1992).Google Scholar
8 Sato, H., Minami, T., Mamura, Y., and Takata, S., Thin Solid Films, 246, 86 (1994).Google Scholar
9 Banerjee, A., Wolf, D., Yang, J., and Guha, S., J. Appl. Phys. 70, 1692 (1991).Google Scholar
10 Minami, T., Oohashi, K., and Takata, S., Thin Solid Films 193, 721 (1990).Google Scholar
11 Sarkar, A., Ghosh, S., Chaudhuri, S., and Pal, A.K., Thin Solid Films 204, 255 (1991).Google Scholar
12 Quaranta, F., Valentini, A., Rizzi, F.R., and Casamassima, G., J. Appl. Phys. 74, 244 (1993).Google Scholar
13 Goyal, D.J., Agashe, C., Takwale, M.G., and Bhide, b.G., J. Mater. Res. 8 (5), 1052 (1993).Google Scholar
14 Ghosh, A. and Basu, S., Mater. Chem. Phys. 27, 45 (1991).Google Scholar
15 Tomar, M.S., Thin Solid Films, 164, 295 (1988).Google Scholar
16 Tang, W. and Cameron, D.C., Thin Solid Films, 238, 83 (1994).Google Scholar
17 Craciun, V., Elders, J., Gardeniers, J.G.E., and Boyd, I. W., Appl. Phys. Lett. 65 (23), 2963 (1994).Google Scholar
18 Kern, W. and Heim, W.C., J. Electro. Chem. Soc. 117, 562 (1970).Google Scholar
19 Hu, J. and Gordon, R. G., J. Appl. Phys. 71, 880 (1992).Google Scholar
20 Hu, J. and Gordon, R. G., J. Appl. Phys. 72, 5381 (1992).Google Scholar
21 Hu, J. and Gordon, R. G., (a) J. Electrochem. Soc. 139, 2014 (1992),Google Scholar
(b) Mater. Res. Soc. Symp. Proc. 242, 743 (1992).Google Scholar
22 Hu, J. and Gordon, R. G., Mater. Res. Soc. Symp. Proc. 283, 891 (1993).Google Scholar
23 Hu, J. and Gordon, R. G., (a) Solar Cells, 30, 437 (1991),Google Scholar
(b) Mater. Res. Soc. Symp. Proc. 202, 459 (1991).Google Scholar
24 Lau, C.K., Tiku, S.K., and Lakin, K.M., J. Electrochem.. Soc. 127, 1843 (1980).Google Scholar
25 Roth, A.P. and Williams, D.F., J. Appl. Phys. 52, 6685 (1981).Google Scholar
26 Sheally, J.R., Baliga, B.J., Field, R.J., and Ghandi, S.K., J. Electrochem. Soc. 128, 558 (1981).Google Scholar
27 Smith, F.T.J., Appl. Phys. Lett. 43, 1108 (1983).Google Scholar
28 Kern, W. and Heim, W.C., J. Electro. Chem. Soc. 117, 562 (1970).Google Scholar
29 Tabuchi, K., Wenas, W.W., Yamada, A., Konagai, M., and Takahashi, K., Jpn. J. Appl. Phys., 32, 3764 (1993).Google Scholar
30 Wenas, W.W., Yamada, A., Konagai, M., and Takahashi, K., Jpn. J. Appl. Phys., 30, L441 (1991).Google Scholar
31 Sato, H., Minami, T., Takata, S., Miyata, T., and Ishii, M., Thin Solid Films, 236, 14 (1993).Google Scholar
32 Tang, W. and Cameron, D.C., Thin Solid Films, 238, 83 (1994).Google Scholar
33 Hu, J. and Gordon, R. G., J. Appl. Phys. 71, 880 (1992).Google Scholar
34 Yanagi, H., Kawazoe, H., Kudo, A., Yasukawa, M., and Hosono, H., J. Electroceram. 4 (2000) 427.Google Scholar
35 Kudo, A., Yanagi, H., Hosono, H., and Kawasoe, H., Appl. Phys. Lett. 73 (1998) 220.Google Scholar
36 Minegishi, K., Koiwai, Y., Kikuchi, Y., Yano, K., Kasuga, M. and Shimizu, R., Jpn. J. Appl. Phys., 36, L1453 (1997).Google Scholar
37 White, H.W., Zhu, S., Ryu, Y., US Patent 6,410,162 B1, June 25, 2002.Google Scholar