Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T00:26:47.203Z Has data issue: false hasContentIssue false

Modeling of Silicon Nanodots Nucleation and Growth Deposited by LPCVD on SiO2 : From Molecule/surface Interactions to Reactor Scale Simulations

Published online by Cambridge University Press:  01 February 2011

Ilyes Zahi
Affiliation:
Ilyes.Zahi@ensiacet.fr, LAAS - CNRS, MIS, 7, av du Colonel Roche, Toulouse, 31077, France, Metropolitan, +33 (0)5 61 33 62 28, +33 (0)5 61 33 62 33
Hugues Vergnes
Affiliation:
Hugues.Vergnes@ensiacet.fr, Laboratoire de Génie Chimique, ENSIACET, Institut National Polytechnique de Toulouse,UMR-CNRS 5503, 5 rue Paulin Talabot, Toulouse, 31106, France
Brigitte Caussat
Affiliation:
Brigitte.Caussat@ensiacet.fr, Laboratoire de Génie Chimique, ENSIACET, Institut National Polytechnique de Toulouse,UMR-CNRS 5503, 5 rue Paulin Talabot, Toulouse, 31106, France
Alain Esteve
Affiliation:
aesteve@laas.fr, Laboratoire d'Analyse et d'Architecture des Systèmes, UPR-CNRS 8011, 7, av du Colonel Roche, Toulouse, 31077, France
Mehdi Djafari Rouhani
Affiliation:
djafari@laas.fr, Laboratoire d'Analyse et d'Architecture des Systèmes, UPR-CNRS 8011, 7, av du Colonel Roche, Toulouse, 31077, France
Pierre Mur
Affiliation:
MurPi@chartreuse.cea.fr, CEA-LETI-MINATEC, 17 avenue des Martyrs, Grenoble, 38054, France
Philippe Blaise
Affiliation:
philippe.blaise@cea.fr, CEA-LETI-MINATEC, 17 avenue des Martyrs, Grenoble, 38054, France
Emmanuel Scheid
Affiliation:
scheid@laas.fr, Laboratoire d'Analyse et d'Architecture des Systèmes, UPR-CNRS 8011, 7, av du Colonel Roche, Toulouse, 31077, France
Get access

Abstract

We present first results combining models at continuum and atomistic (DFT) levels to improve understanding of key mechanisms involved in silicon nanodots (NDs) synthesis on SiO2 by Low Pressure Chemical Vapor Deposition (LPCVD) from silane SiH4. In particular, by simulating an industrial LPCVD reactor using the CFD code Fluent, we find that the deposition time could be increased and then the reproducibility and uniformity of NDs deposition could be improved when highly diluting silane in a carrier gas. A consequence of this high dilution seems to be that the contribution to deposition of unsaturated species such as silylene SiH2 highly increases. This result is important since our first DFT calculations have shown that silicon chemisorption on silanol Si-OH or siloxane Si-O-Si bonds present on SiO2 substrates could only proceed from silylene (and probably from other unsaturated species). The silane saturated molecule could only contribute to NDs growth, i.e. silicon chemisorption on already deposited silicon bonds. Increasing silylene contribution to deposition in highly diluting silane could then also exalt silicon nucleation on SiO2 substrates and then increase NDs density.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tiwari, S., Rana, F., Chan, K., Hanafi, H., Chan, W., Bucanan, D., Appl. Phys. Lett. 68, 1377 (1996).Google Scholar
2. DeBlauwe, J., IEEE Transactions on Nanotechnology 1, 7277 (2002).Google Scholar
3. Cocheteau, V., PhD thesis, INPT France (2005) and V. Cocheteau, P. Mur, T. Billon, E. Scheid, B. Caussat, submitted to Chem. Eng. Sci. (2006).Google Scholar
4. Cocheteau, V., Donnadieu, P., Mur, P., Billon, T., Scheid, E., Caussat, B., Electrochemical Society Proceedings 2005–09, 523530 (2005).Google Scholar
5. Wilke, T.E., Turner, K.A., Takoudis, C.G., Chem. Eng. Sci. 41, 4, 643650 (1986).Google Scholar
6. Vansant, E.F., Van Der Voort, P., Vrancken, K.C., Stud. in Surf. Sci. and Cat. 93 (1995).Google Scholar
7. Kajikawa, Y., Noda, S., Appl. Surf. Sci. 245, 281289 (2005).Google Scholar
8. Cordier, C., Dehan, E., Scheid, E., Duverneuil, P., Mat. Sci. and Eng. B 37, 3034 (1996).Google Scholar
9. Kleijn, C.R., J. of Electro. Soc. 138, 7, 21902200 (1991).Google Scholar
10. Becke, A. D., J. Chem. Phys. 98, 5648 (1993).Google Scholar
11. Lee, C. T., Yang, W. T., Parr, R. G., Phys. Rev. B 37, 785 (1988).Google Scholar
12. Santiso, E., Gubbins, K. E., Mol. Simul. 30, 699 (2004).Google Scholar
13. Gates, S.M., Greenlief, C.M., Beach, D.B., Holbert, P.A., J. of Chem. Phys. 92, 31443153 (1990).Google Scholar
14. Bowler, D.R., Goringe, C.M., Surf. Sci. Lett. 360, 489494 (1996).Google Scholar
15. Brown, A.R., Doren, D.J., J. of Chem.Phys. 110, 26432651 (1999).Google Scholar
16. Lin, J.S., Kuo, Y.T., Thin Solid Films 370, 192198 (2000).Google Scholar
17. Shinohara, M., Kimura, Y., Saito, M. et Niwano, M., Surf. Sci. 502–503, 96101 (2002).Google Scholar
18. Tsai, D.-S., Chang, T.-C., Hsin, W.-C., Hamamura, H. et Shimogaki, Y., Thin Solid Films 411, 177184 (2002).Google Scholar
19. Que, J.-Z., Radny, M.W., Smith, P.V., Surf. Sci. 540, 265273 (2003).Google Scholar
20. Kavulak, D., Heather, H.L et Harrison, I., J. of Phys. Chem. 109, 685688 (2005).Google Scholar
21. Baron, T., Mazen, F., Cusseret, C., Souifi, A., Mur, P., Fournel, F., Séméria, M.N., Moriceau, H., Gentile, P., Magnea, N., Micro. Eng. 61–62, 511515 (2002).Google Scholar
22. Mazen, F., Baron, T., Hartmann, J.M., Brémond, G., Séméria, M.N., J. Cryst. Growth 225, 250257 (2003).Google Scholar
23. Baron, T., Mazen, F., Hartmann, J.M., Mur, P., Puglisi, R.A., Lombardo, S., Ammendola, G., Gerardi, C., Solid-State Electron. 48, 15031509 (2004).Google Scholar
24. Miyazaki, S., Hamamoto, Y., Yoshida, E., Ikeda, M., Hirose, M., Thin Solid Films 369, 5559 (2000).Google Scholar
24. Miyazaki, S., Hamamoto, Y., Yoshida, E., Ikeda, M., Hirose, M., Thin Solid Films 369, 5559 (2000).Google Scholar