No CrossRef data available.
Article contents
Modelling of the oxidation of Suspended Silicon Nanowires
Published online by Cambridge University Press: 01 February 2011
Abstract
The oxidation of suspended Si nanowires is studied under wet and dry conditions. The nanowire characteristics are extracted from Electron Microscopy images. In parallel, the Deal and Grove model is extended to cylindrical geometry. The used model also assumes that stress effects reduce the oxidation rate and predicts the retardation of oxide growth on curved surface, leading to a self-limited process. The model predictions show a good agreement with experiments.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2009
References
REFERENCES
1.
Sing, N., Argawal, A., Bera, L. K., Liow, T. Y., Yang, R., Rustagi, S. C., Tung, C. H., Kurnar, R., Lo, G. Q., Balasubramanian, N. and Kwong, D. L., IEEE Electron Device Letters
27/5, 383 (2006).Google Scholar
2.
Bernard, E., Ernst, T., Guillaumot, B., Vulliet, N., Garros, X., Maffini-Alvaro, V., Andrieu, F., Barral, V., Allain, F., Toffoli, A., Vidal, V., Delaye, V., vivioz, C., Campidelli, Y., Kemarrec, O., Hartmmann, J. M., Borel, S., Faynot, O., Souifi, A., Coronel, P., Skotnicki, T. and Deleonibus, S., Proceedings of ESSDERC
147 (2007).Google Scholar
3.
Ernst, T., Dupré, C., Isheden, C., Bernard, E., Ritzenthaler, R., Maffini-Alvaro, V., Barbé, J. C., de Crecy, F., Toffoli, A., Vizioz, C., Borel, S., Andrieu, F., Delaye, V., Lafond, D., Rabillé, G., Hartmann, J. M., Rivoire, M., Guillaumot, B., Suhm, A., Rivallin, P., Faynot, O., Ghibaudo, G. and Deleonibus, S., IEDM Tech Dig., 995 (2006).Google Scholar
4.
Dupré, C., Ernst, T., Maffini-Alvaro, V., Delaye, V., Hartmann, J. M., Borel, S., Vizioz, C., Faynot, , Ghibaudo, G. and Deleonibus, S., Solid-State Electronics
52, 4, 519 (2008).Google Scholar
5.
Singh, N., Lim, F. Y., Fang, W. W., Rustagi, S. C., Bera, L. K., Argawal, A., Tung, C. H., Hoe, K. M., Omampuliyur, S. R., Tripathi, D., Adeyeye, A. O., Lo, G. Q., Balasubramanian, N. and Kwong, D. L., IEDM Tech Dig., 548 (2006).Google Scholar
6.
Rustagi, S. C., Singh, N., Fang, W. W., Buddharaju, K. D., Omampuliyur, S. R., teo, S. H. G., Tung, C. H., Lo, G. Q., Balasubramanian, N. and Kwong, D. L., IEEE Electron Device Letters
28/11, 1021 (2007).Google Scholar
7.
Coffin, H., Bonafos, C., Schamm, S., Cherkashin, N., Ben Assayag, G. and Claverie, A., Respaud, M., Dimitrakis, P., Normand, P., J. of Appl. Phys.
99, 044302 (2006).Google Scholar
9.
Kao, D. B., McVittie, J. P., Nix, W. D., and Saraswat, K. C., IEEE Trans. Electron Devices
35, 25 (1988).Google Scholar
10.
Hubert, A., Colonna, J. P., bécu, S., Dupré, C., Maffini-Alavaro, V., Hartmann, J. M., Pauliac, S., Vivioz, C., Aussenac, F., Carabasse, C., Delaye, V., Ernst, T., Deleonibus, S., ECS Transactions
13, 195 (2008).Google Scholar
11.
Fukuda, H., Hoyt, J. L., McCord, M. A., Pease, R. F. W., Appl. Phys. Lett.
70
333 (1997).Google Scholar
12.
Liu, H. I., Biegelsen, D. K., Ponce, F. A., Johnson, N. M. and Pease, R. F. W., Appl. Phys. Lett.
64, 1383 (1994).Google Scholar
13.
Shi, D., Liu, B. Z., Mohammed, A. M., Lew, K. K. and Mohney, S. E., J. Vac. Technol.
B24
1333 (2006).Google Scholar
16. Article submitted to Appl. Phys. Lett.Google Scholar