Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-29T10:42:23.129Z Has data issue: false hasContentIssue false

Modelling the Multiplicity of Conductance Structures in Clusters of Silicon Quantum Dots

Published online by Cambridge University Press:  28 February 2011

D. W. Boeringer
Affiliation:
University of North Carolina at Charlotte, Charlotte, NC 28223
R. Tsu
Affiliation:
University of North Carolina at Charlotte, Charlotte, NC 28223
Get access

Abstract

We have fabricated diode structures containing clusters of nanoscale silicon particles. The modelling of the observed multiple current steps from resonant tunnelling through the quantum states of these particles is presented. Whenever the applied voltage aligns the Fermi surface of the contact to a discrete state, conduction results. Since the clusters are connected in parallel, successive connections of parallel current paths can cause multiple current steps. These current steps can be drastically amplified by avalanche multiplication when the substrate is deeply depleted. The transport in this regime is quite nonlinear, and cannot be represented by a linear equivalent circuit. Apart from gaining a fundamental understanding of the measured I-V characteristics of our diodes, our results serve to promote new applications for quantum switches.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ye, Q.-Y., Tsu, R., and Nicollian, E. H., Phys. Rev. B. 44, 1806 (1991).Google Scholar
2 Tsu, R., Li, X.-L., and Nicollian, E. H., Appl. Phys. Lett. 65, 842 (1994).Google Scholar
3 Nicollian, E. H. and Tsu, R., J. Appl. Phys. 74, 4020 (1993).Google Scholar
4 Tsu, R., Morais, J., and Bowhill, A., unpublished.Google Scholar
5 Tsu, R., Proc. SPIE 1361, 231 (1990).Google Scholar
6 For example, Shur, M., Physics of Semiconductor Devices (Prentice-Hall, New Jersey, 1990).Google Scholar
7 Maes, W., DeMeyer, K., and VanOverstraeten, R., Sol.-Sta. Electron. 33, 705 (1990).Google Scholar
8 Dellow, M. W., Beton, P. H., Langerak, C. J. G. M., Foster, T. J., Main, P. C., Eaves, L., Henini, M., Beaumont, S. P., and Wilkinson, C. D. W., Phys. Rev. Lett. 68, 1754 (1992).Google Scholar
9 Miller, S. L., Phys. Rev. 105, 1246 (1957).Google Scholar
10 Mânduteanu, G. V., IEEE Trans. Electron. Dev. ED-32, 2492 (1985).Google Scholar
11 Leguerre, R. and Urgell, J., Sol.-Sta. Electron. 19, 875 (1976).Google Scholar
12 For example, Nicollian, E. H. and Brews, J. R., MOS (Metal Oxide Semiconductor) Physics and Technology (John Wiley and Sons, New York, 1982).Google Scholar
13 Tsu, R., Physica B 189, 235 (1993).Google Scholar
14 Yokoyama, S., Dong, D. W., DiMaria, D. J., and Lai, S. K., J. Appl. Phys. 54, 7058 (1983).Google Scholar