Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T06:45:04.420Z Has data issue: false hasContentIssue false

Modification of Thermoelectric Properties Using Insertion Techniques

Published online by Cambridge University Press:  10 February 2011

E. Hatzikraniotis
Affiliation:
Department of Physics - Solid State Physics Section Aristotle University of Thessaloniki, 54006 Thessaloniki, GREECE
Th. Kyratsi
Affiliation:
Department of Physics - Solid State Physics Section Aristotle University of Thessaloniki, 54006 Thessaloniki, GREECE
K. Chrissafis
Affiliation:
Department of Physics - Solid State Physics Section Aristotle University of Thessaloniki, 54006 Thessaloniki, GREECE
K. M. Paraskevopoulos
Affiliation:
Department of Physics - Solid State Physics Section Aristotle University of Thessaloniki, 54006 Thessaloniki, GREECE
Get access

Abstract

In this work is presented the application insertion techniques for the modification of the performance of thermoelectric materials. The results indicate that in cases as in Bi2Se3 compounds where insertion of foreign species in the lattice is possible due to its particular crystal structure, the insertion technique could be proved a valuable easy to apply and cost effective, alternative to doping technique. The techniques can produce homogeneous materials with electronic and thermoelectric properties finely tuned.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bhandari, C.M. and Rowe, D.M. in CRC Handbook of Thermoelectrics, ed. Rowe, D.M., CRC Press N.Y. 1995, pp.43 Google Scholar
2. Sofo, J.O. and Mahan, G.D., Phys.Rev B49, 4565, (1994)CrossRefGoogle Scholar
3. Liang, Y. in Intercalation in Layered Materials, ed. Dresselhaous, M.S., 1986, Plenum Press N.Y. Google Scholar
4. Atabaeva, E. Ya., Bendeliani, N.A. and Popova, S.V., Soy. Physics Solid State V 15, 2345 (1973)Google Scholar
5. Paraskevopoulos, K.M., Hatzikraniotis, E., Chrissafis, K., Alexiadis, K., Stoemenos, J., Economou, N.A. and Balkanski, M., Mat.Sci. and Engin. (B) 1, 147 (1988).CrossRefGoogle Scholar
6. Kyratsi, Th., Hatzikraniotis, E., Paraskevopoulos, K.M. and Chrissafis, K., Ionics 3, 305 (1997)CrossRefGoogle Scholar
7. Kalampokis, A., Hatzikraniotis, E., and Paraskevopoulos, K.M., Mat. Res. Bul., 33 (9), 1356 (1998)CrossRefGoogle Scholar
8. Krost, A. in Landolt-Bornstein Neue Serie, Vol. 17, 1983, pp. 269271.Google Scholar
9. Gorbecht, H., Seeck, S.,: Z. Phys. 222, 93 (1969)Google Scholar
10. Pauw, Van der, Phillips Res. Repts. 13, 1 (1958)Google Scholar
11. Compans, E., Rev. Sci. Instrum. 60 (8), 2715 (1989)CrossRefGoogle Scholar
12. Moss, T.S., Optical Properties of Semiconductors, 1959, Butterworths, London Google Scholar
13. Tichy, L. and Horak, J., Phys. Rev. B 19, 1126 (1979)CrossRefGoogle Scholar
14. Kireev, P.S., Semiconductor Physics, Mir Publ, Moscow, 1978, p. 234 Google Scholar
15. Hatzikraniotis, E., Paraskevopoulos, K.M. and Chrissafis, K., Proc. 20th ICPS, ed. Anastassakis, E.M. and Johanopoulos, J.D., World Scientific, vol. 3 p. 1799 (1993)Google Scholar
16. Zawadski, W., Adv. Phys. 23, 435 (1974).CrossRefGoogle Scholar