Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T07:16:35.008Z Has data issue: false hasContentIssue false

Modified Sol-Gel Synthesis of Vanadium Oxide Nanocomposites Containing Surfactant Ions, and Their Partial Removal

Published online by Cambridge University Press:  18 March 2011

Arthur Dobley
Affiliation:
Whittingham Chemistry Department and the Institute for Materials Research, State University of New York at Binghamton, Binghamton, New York 13902-6016, U.S.A.
Peter Y. Zavalij
Affiliation:
Whittingham Chemistry Department and the Institute for Materials Research, State University of New York at Binghamton, Binghamton, New York 13902-6016, U.S.A.
Jürgen Schulte
Affiliation:
Whittingham Chemistry Department and the Institute for Materials Research, State University of New York at Binghamton, Binghamton, New York 13902-6016, U.S.A.
M. Stanley
Affiliation:
Whittingham Chemistry Department and the Institute for Materials Research, State University of New York at Binghamton, Binghamton, New York 13902-6016, U.S.A.
Get access

Abstract

Recently, there has been much interest in creating new layered transition metal oxides. Vanadium oxides may be used as sorbents, catalysts, and cathodes in lithium batteries. The modified sol-gel technique allows for some control towards the final structure of the compound. Using this technique, a new layered vanadium oxide phosphate material, containing the surfactant dodecylphosphate, has been synthesized. The compound was analyzed using powder XRD, TGA, SEM, FTIR, TEM, and solid state NMR for both 51V and 31P. V2O3(PO4C12H25)3Na2−xKx(H2O)3.2 is the general formula of the layered product with an interlayer spacing of 36.6 Å The initial compound is composed of a vanadium oxide phosphate layer sandwiched between two hydrocarbon layers. The synthesis, composition, and structure of the initial compound will be discussed. Interestingly, when this compound is calcined to 400°C, the structure changes and is possibly hexagonal. Preliminary results are presented on this calcined material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T.- W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., and Schlenker, J. L. J. Amer. Chem. Soc., 114, 10834 (1992).Google Scholar
2. Beck, J. S., Vartuli, J. C., Kennedy, G. J., Kresge, C. T., Roth, W. J., and Schramm, S. E. Chem. Mater., 6, 1816 (1994).Google Scholar
3. Huo, Q. S., Margolese, D. I., Ciesla, U., Feng, P., Gier, T. E., Sieger, P., Leon, R., Petroff, P. M., Schuff, F., and Stucky, G. D., Nature, 368, 317 (1994).Google Scholar
4. Huo, Q., Margolese, D. I., Ciesla, U., Demuth, D. G., Stucky, G. D., and et.al., Chem. Mater., 6, 1176 (1994).Google Scholar
5. Zavalij, P. Y. and Whittingham, M. S., Acta Cryst., B55, 627 (1999).Google Scholar
6. Chirayil, T. A., Zavalij, P. Y., and Whittingham, M. S., Chem. Mater., 10, 2629 (1998).Google Scholar
7. Janauer, G. G., Dobley, A., Guo, J., Zavalij, P., and Whittingham, M. S., Chem. Mater., 8, 2096 (1996).Google Scholar
8. Janauer, G. G., Chen, R., Dobley, A. D., Zavalij, P. Y., and Whittingham, M. S., Mater. Res. Soc. Proc., 457, 533 (1997).Google Scholar
9. Janauer, G. G., Zavalij, P. Y., and Whittingham, M. S., Chem. Mater., 9, 647 (1997).Google Scholar
10. Antonelli, D. M. and Ying, J. Y., Angew. Chem. Int. Ed. Engl., 34, 2014 (1995).Google Scholar
11. Turevskaya, E. P. and Turova, N. Y., Koord. Khim., 15, 373 (1989).Google Scholar
12. Lapina, O.B., Mastikhin, V.M., Shubin, A.A., Krasilnikov, V.N., and Zamarev, K.I. Progress in NMR Spectroscopy, 24, 457525, (1992).Google Scholar
13. Dobley, A., Zavalij, P.Y., Schulte, J., and Whittingham, M. S., Chem. Mater. (submitted).Google Scholar
14. Johnson, J.W., Jacobson, A.J., Brody, J.F. and Rich, S.M. Inorg. Chem. 21, 3820–2825 (1982).Google Scholar
15. Zavalij, P.Y., Zhang, F., and Whittingham, M. S., Acta Cryst. C53, 1738 (1997).Google Scholar
16. Conley, R.T.. Infrared Spectroscopy. (Allyn and Bacon, Inc. Boston 1966).Google Scholar