Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T07:00:39.872Z Has data issue: false hasContentIssue false

Molecular Characterisation of Dissolved Organic Matter (DOM) in Groundwaters from the Äspö Underground Research Laboratory, Sweden: A Novel “Finger Printing Tool for Palaeohydrological Assessment

Published online by Cambridge University Press:  01 February 2011

Christopher H. Vane
Affiliation:
British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, NG12 5GG, United Kingdom
Alexander W. Kim
Affiliation:
British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, NG12 5GG, United Kingdom
Antoni E. Milodowski
Affiliation:
British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, NG12 5GG, United Kingdom
John Smellie
Affiliation:
Conterra AB, Box 8180, 10420 Stockholm, Sweden
Eva-Lena Tullborg
Affiliation:
Terralogica AB, Östra Annekärrsvägen 17443 72, Grübo, Sweden
Julia M. West
Affiliation:
British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, NG12 5GG, United Kingdom
Get access

Abstract

The molecular signature of dissolved organic matter (DOM) in groundwaters can be used as a tool when investigating the palaeohydrological response of groundwater systems in relation to changes in recharge environment, and also for examining groundwater compartmentalisation, mixing and transport at underground repositories for radioactive waste. The DOM in groundwaters from two compartmentalised bodies of groundwater of distinctly different origin within the Äspö Underground Research Laboratory (URL), Sweden and in Baltic seawater has been isolated using tangential flow ultrafiltration (TUF) and diafiltration. Recoveries of DOM ranged from 34.7 to 0.1 mg/L with substantial differences in the concentrations of the groundwaters collected only 120 m apart. Analysis by infrared spectroscopy (IR) and pyrolysisgas chromatography-mass spectrometry (Py-GC-MS) of the isolated DOM revealed that the groundwaters contained abundant alkylphenols which may represent heavily decomposed proteins or lignins originating from biopolymers contained within soils. The difference in the distribution and relative abundance of major pyrolysis products groups such as alkyphenols confirmed that the groundwater and Baltic seawater DOM samples were chemically distinct indicating minimal infiltration of marine groundwater derived by recharge from the Baltic or earlier Littorina Sea within the two compartmentalised groundwater bodies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bath, A., Milodowski, A., Ruotsalainen, P., Tullborg, E-T., Ruiz, A. Cortés and Aranyossy, J.F., EUR 19613 (2000), European Commission Luxembourg.Google Scholar
2 Degnan, P., Bath, A., Cortés, A., Delgado, J., Haszeldine, R.S., Milodowski, A., Puigdomenech, I., Recreo, F., Šilar, J., Torres, T. and Tullborg, E-L.. PADAMOT: Project Overview Report. United Kingdom Nirex Limited (2005).Google Scholar
3 Metcalfe, R., Hooker, P.J., Darling, W.G. and Milodowski, A.E., in dating and duration of fluid flow and fluid-rock interaction. Geological Society of London Special Publication, 144, 233260.Google Scholar
4 Milodowski, A.E., Tullborg, E-L., Buil, B., Gómez, P., Turrero, M-J., Haszeldine, S., England, G, Gillespie, M.R., Torres, T., Ortiz, J.E., Zachariáš, J., Silar, J., Chvátal, M., Strnad, L., Šebek, O., Bouch, J.E., Chenery, S.R., Chenery, C., Shepherd, T.J. and McKervey, J.A., J.A. PADAMOT Project Technical Report WP2. United Kingdom Nirex Limited (2005).Google Scholar
5 Meyers, P.A., Org. Geochem, 27, 213250 (1997).Google Scholar
6 Benner, R. and Opsahl, S., Org. Geochem. 32, 597611 (2001).Google Scholar
7 Benner, R., Biddanda, B., Black, B. and M, McCarthy, Mar. Chem, 57, 243263 (1997).Google Scholar
8 Goni, M., Teixeira, M. and Perkey, D.W., D. W. Est. Coast. Shelf Sci. 57, 10231048 (2003).Google Scholar
9 Lu, X.Q., Maie, N., Hanna, J.V., Childers, D.L. and Jaffe, R., R. Water Res. 37, 25992606 (2003).Google Scholar
10 Frazier, S.W., Nowack, K.O., Goins, K.M., Cannon, F.S., Kaplan, L.A. and Hatcher, P.G., J. Anal. Appl. Pyrolysis, 70, 99128 (2003).Google Scholar
11 Opsahl, S. and Benner, R., Nature, 386, 480482 (1987).Google Scholar
12 Vane, C.H. Int. Biodet. Biodeg, 51, 6775 (2003).Google Scholar
13 Heemst, J.D.H. van, Bergen, P.F. van, Stankiewicz, B.A. and Leeuw, J.W. de, J. Anal. Appl. Pyrolysis, 52, 239256 (1999).Google Scholar
14 Templier, J., Derenne, S., Croue, J-P. and Largeau, C., Org. Geochem. 36, 14181442 (2005).Google Scholar
15 Heemst, J.D.H. van, Megens, L., Hatcher, P.G. and Leeuw, J.W. de, Org. Geochem, 31, 847857 (2000).Google Scholar
16 Williams, D.H. and Fleming, I., Spectroscopic methods in organic chemistry, edited by Sykes, P. (McGraw-Hill, Maidenhead, 1966), p. 55.Google Scholar
17 Vane, C.H., C. H. Appl. Spectroscopy, 57, 514517 (2003).Google Scholar
18 Inbar, Y., Chen, Y. and Hadar, Y, Soil Sci. Soc. of Amer. J. 54, 13161323 (1990).Google Scholar
19 Tsuge, S. and Matsubara, H., J. Anal. Appl. Pyrolysis, 8, 4964 (1985).Google Scholar
20 Ralph, J. and Hatfield, R., J. Agric.Food Chem. 39, 14261437 (1991).Google Scholar