Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-02T18:42:34.888Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulation of the Glass Transition of Ortho-Terphenyl in Bulk and Thin Films

Published online by Cambridge University Press:  01 February 2011

Jayeeta Ghosh
Affiliation:
jghosh@ucdavis.edu, UC Davis, Chem Eng & Mat Sci, 1 Shields Ave, Davis, CA, 95616, United States
Roland Faller
Affiliation:
rfaller@ucdavis.edu, UC Davis, Chem Eng & Mat Sci, 1 Shields Ave, Davis, CA, 95616, United States
Get access

Abstract

The glass transition temperature in thin film depends strongly on film thickness and interaction with the substrate and it is normally a priori not clear which way it deviates from the bulk value. This causes new challenge in the technological advancement of smaller and smaller electronic devices. In this study molecular dynamics simulations of a low-molecular weight organic glass former, ortho-terphenyl, are carried out in bulk and freestanding films. The main motivation is to provide insight into the confinement effect without interface interactions. Based on earlier models of ortho-terphenyl we developed an atomistic model for bulk simulations. The model reproduces the literature data from simulations as well as experiments. After characterizing the bulk model we form a freestanding film. This film gives us the opportunity to study the dynamical heterogeneity near the glass transition by in-plane mobility and reorientation dynamics. We also develop a structurally coarse-grained model for this glass former based on our atomistic model to study bigger system for a longer period of time.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jackson, C. L. and McKenna, G. B., J. Non-Cryst, Solids. 221, 131 (1991).Google Scholar
2. Zhang, J., Liu, G., and Jonas, J., J. Phys. Chem. 96, 3478 (1992).Google Scholar
3. McKenna, G. B., Jackson, C. L., Reilly, J. M. O., and Sedita, J. S., Polymer Preprints 33, 118 (1992).Google Scholar
4. Jackson, C. L. and McKenna, G. B., Chem. Mater 8, 2128 (1996).Google Scholar
5. Park, J. Y. and McKenna, G. B., Phys. Rev. B 61, 6667 (2000).Google Scholar
6. Orts, W. J., Zanten, J. H. van, Wu, W. L., and Satija, S. K., Phys. Rev. Lett 71, 867 (1993).Google Scholar
7. Mel'nichenko, Y. B., Schuller, J., Richert, R., Ewen, B., and Loong, C., J. Chem. Phys 103, 2016 (1995).Google Scholar
8. Keddie, J. L., Jones, R. A. L., and Cory, R. A., Faraday Discussion 98, 219 (1994).Google Scholar
9. Forrest, J. A., Dalnoki-Veress, K., Stevens, J. R., and Dutcher, J. R., Phys. Rev. Lett 77, 2002 (1996).Google Scholar
10. Forrest, J. A. and Jones, R. A. L., The glass transition and relaxation dynamics in thin Polymer Films; Polymer surfaces, interfaces and thin films (World Scientientific Publishing Co, Singapore, 2000).Google Scholar
11. Keddie, J. L., Jones, R. A. L., and Cory, R. A., Europhys. Lett 27, 59 (1994).Google Scholar
12. Yoshimoto, K., Jain, T. S., Nealey, P. F., and Pablo, J. J. de., J. Chem. Phys 122, 144712 (2005).Google Scholar
13. Mansfield, K. F. and Theodorou, D. N., Macromolecules 24, 6283 (1991).Google Scholar
14. Doruker, P. and Mattice, W. L., Macromolecules 32, 194 (1999).Google Scholar
15. Boddeker, B. and Teichler, H., Phys. Rev. E 59, 1949 (1999).Google Scholar
16. Böhmer, R., Hinze, G., Diezemann, G., Geil, B., and Sillescu, H., Europhys. Lett. 36, 55 (1996).Google Scholar
17. Sillescu, H., J. Non-Crystalline Solids 243, 81 (1999).Google Scholar
18. Lindahl, E., Hess, B., and Spoel, D. van der, J. Mol. Model 7, 306 (2001).Google Scholar
19. Kudchadkar, S. R. and Wiest, J. M., J. Chem. Phys 103, 8566 (1995).Google Scholar
20. Rane, S. S., Mattice, W. L., and Dhinojwala, A., J. Phys. Chem. B 108, 14830 (2004).Google Scholar
21. Jang, J. H., Ozisik, R., and Mattice, W. L., Macromolecules 33, 7663 (2000).Google Scholar
22. Ghosh, J., Wong, B. Y., Sun, Q., Pon, F. R., Faller, R. Molecular Simulation (2006) in pressGoogle Scholar
23. Faller, R. Reviews in Computational Chemistry (2006) in pressGoogle Scholar
24. Smith, W. and Forester, T. J. Molec. Graphics, 14, 136 (1996)Google Scholar
25. Greet, R. J. and Turnbull, D., J. Chem. Phys 46, 1243 (1967).Google Scholar
26. McCall, D. W., Douglass, D. C., and Falcone, D. R., J. Chem. Phys 50, 3839 (1969).Google Scholar
27. Ghosh, J. and Faller, R. J Chem Phys (2006) in pressGoogle Scholar