Published online by Cambridge University Press: 01 February 2011
We report the fabrication of an amorphous silicon based fluorescence sensor for miniaturized total analysis systems along with experimental results on optical excitation and detection elements. The pin-photodiode exhibits a dynamic range of 110dB and a room temperature dark current of less than 3000 charge carriers per ms according to a detector area of 0.1256mm2. The spectral response is ranging from 320nm to 780nm with a maximum at 600nm @ 80% quantum efficiency. To provide high sensitivity, the excitation light irradiates the fluid orthogonally to the active sensor detection direction by means of specifically designed microfluidic capillaries filled with e.g. methylene iodide or 1,2-o-dibrombenzene. The liquid core, which is enclosed by solid cladding materials, has been calculated to dimensions of a width of 16.75µm or 59.67µm with a height from 15µm to 50µm according to a number of propagating modes inside of 16 or 57, respectively.