Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T02:09:41.405Z Has data issue: false hasContentIssue false

Multiparameter Imaging and Understanding the Role of the Tip - Atomic Resolution Images of Rutile TiO2 (110)

Published online by Cambridge University Press:  09 March 2011

S. J. O’Brien
Affiliation:
Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and School of Physics, Trinity College, Dublin 2, Ireland
H. Ozgur Ozer
Affiliation:
Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and School of Physics, Trinity College, Dublin 2, Ireland
G. L. W. Cross
Affiliation:
Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and School of Physics, Trinity College, Dublin 2, Ireland
J. B. Pethica
Affiliation:
Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and School of Physics, Trinity College, Dublin 2, Ireland
Get access

Abstract

A major challenge for scanned probe microscopy is to identify structures and chemical species on a surface, which have not already been inferred from other analytical techniques. Progress is impeded by the fact that in general the structure and composition of the tip atom is not known. To illustrate some of the issues involved, we report simultaneous scanning tunneling microscopy/atomic force microscopy (STM/AFM) of the TiO2 (110) surface. The use of small amplitudes enabled the simultaneous acquisition of force gradient and barrier height images during standard STM imaging. Surprisingly, we find most STM images exhibit a corrugation contrast inverse to that usually reported in the literature. However, regardless of the contrast in STM, force gradient images always showed greater attraction over O rows. Barrier height images also show this consistency, always being greater over O rows. This supports the theoretical model of the electronic structure of the surface, but shows that the tip structure and interaction cannot be ignored in modeling STM images. We conclude that there is a fine balance between topography and local density of states (LDOS) in STM imaging of this surface; which of them dominates the STM image is determined by the tip. Simultaneous multi-parameter imaging is useful in interpreting images reliably, particularly on multi-component surfaces.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Sugimoto, Y., Pou, P., Abe, M., Jelinek, P., Perez, R., Morita, S., and Custance, O., Nature 446, 64, (2007).Google Scholar
[2] Ozer, H. O., O’Brien, S. J., and Pethica, J. B., Appl. Phys. Lett. 90, 133110 (2007).Google Scholar
[3] Pang, C. L., Sasahara, A., Onishi, H., Chen, Q., and Thornton, G., Phys. Rev. B 74, 073411 (2006).Google Scholar
[4] Sawada, D., Sugimoto, Y., Morita, K.-I., Abe, M., and Morita, S., Appl. Phys. Lett. 94, 173117, (2009).Google Scholar
[5] Diebold, U., Surf. Sci. Rep. 48, 53 (2003).Google Scholar
[6] Diebold, U., Anderson, J. F., Ng, K.-O., and Vanderbilt, D., Phys. Rev. Lett. 77, 1322, (1996).Google Scholar
[7] Fischer, S., Munz, A. W., Schierbaum, K.-D., and Gopel, W., Surf. Sci. 337, 17 (1995).Google Scholar
[8] Mitchell, C. J., Howard, A., Carney, M., and Egdell, R. G., Surf. Sci. 490, 196 (2001).Google Scholar
[9] Diebold, U., Lehman, J., Mahmoud, T., Kuhn, M., Leonardelli, G., Hebenstreit, W., Schmid, M., and Varga, P., Surf. Sci. 411, 137 (1998).Google Scholar
[10] Doyen, G., Drakova, D., and Scheffler, M., Phys. Rev. B 47, 9778 (1993).Google Scholar
[11] Jelınek, P., Svec, M., Pou, P., Perez, R., and Chab, V., Phys. Rev. Lett. 101, 1, (2008).Google Scholar
[12] Nieminen, J., Niemi, E., and Rieder, K., Surf. Sci. 552, 47 (2004).Google Scholar
[13] Hofer, W. A., Fisher, A. J., Wolkow, R. A., and Grutter, P., Phys. Rev. Lett. 87, 236104 (2001).Google Scholar
[14] Blanco, J. M., Gonzalez, C., Jelinek, P., Ortega, J., Flores, F., and Perez, R., Phys. Rev. B 70, 085405 (2004).Google Scholar
[15] Blanco, J. M., Gonzalez, C., Jelınek, P., Ortega, J., Flores, F., Perez, R., Rose, M., Salmeron, M., Mendez, J., Wintterlin, J., and Ertl, G., Phys. Rev. B 71, 4 (2005).Google Scholar
[16] Oral, A., Grimble, R., Ozer, H. O., and Pethica, J. B., Rev. Sci. Inst. 74, 3656 (2003).Google Scholar
[17] Pethica, J. B., Knall, J., and Wilson, J. H., Inst. Phys. Conf. Ser. 134, 597 (1993).Google Scholar
[18] Herz, M., Schiller, C., Giessibl, F. J., and Mannhart, J., Appl. Phys. Lett. 86, 153101 (2005).Google Scholar
[19] Ostermann, D., Walther, G., and Schierbaum, K. D., Phys. Rev. B 71, 235416 (2005).Google Scholar
[20] Cross, G., Schirmeisen, A., Stalder, A., Grutter, P., Tschudy, M., and Durig, U., Phys. Rev. Lett. 80, 4685 (1998).Google Scholar
[21] Tersoff, J. and Hamann, D., Phys. Rev. Lett., 50, 19982001, (1983)Google Scholar
[22] Dunphy, J.C., Ogletree, D.F., Salmeron, M.B., Sautet, P., Bocquet, M.-L. and Joachim, C., Ultramicroscopy 42-44, 490, (1992).Google Scholar
[23] Coombs, J.H. and Pethica, J.B., IBM J.Res & Dev., 30, 455459, (1986).Google Scholar
[24] Enevoldsen, G. H., Pinto, H. P., Foster, A. S., Jensen, M. C. R., Kuhnle, A., Reichling, M., Hofer, W. A., Lauritsen, J. V., and Besenbacher, F., Phys. Rev. B 78, 045416 (2008).Google Scholar