Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-29T11:27:01.349Z Has data issue: false hasContentIssue false

Nanocrystals of II-VI Semiconductor Materials

Published online by Cambridge University Press:  28 February 2011

Horst Weller
Affiliation:
Universität Hamburg, Institüt für Physikalische Chemie, Bundesstrasse 45, D-20146 Hamburg, Germany
Tobias Vossmeyer
Affiliation:
Hahn-Meitner-Institut, Abteilung Kleinteilchenforschung, Glienickerstrasse 100, D-14109 Berlin, Germany
Alexander Eychmüller
Affiliation:
Universität Hamburg, Institüt für Physikalische Chemie, Bundesstrasse 45, D-20146 Hamburg, Germany
Alf Mews
Affiliation:
Hahn-Meitner-Institut, Abteilung Kleinteilchenforschung, Glienickerstrasse 100, D-14109 Berlin, Germany
Lynne Katsikas
Affiliation:
Hahn-Meitner-Institut, Abteilung Kleinteilchenforschung, Glienickerstrasse 100, D-14109 Berlin, Germany
Gunter Reck
Affiliation:
Bundesanstalt für Materialpriifung, Berlin
Get access

Abstract

CdS nanoclusters ranging in diameter between 1 and 4 nm were prepared in aqueous solution using aliphatic mercaptoalcohols as ligands. The photon energies of the Is Is absorption and the respective oscillator strengths are in accordance with size quantization theory. Some clusters crystallize as macroscopic 3-D superlattices which were investigated by single crystal x-ray analysis. The neutral Cd17S4(RS)26 clusters are covalently linked in the superlattice the structure of which exhibits self similarity to the interior structure of the clusters.

Onion-shell-like composite particles from CdS and HgS were prepared by successive substitution and re-precipitation processes. Particles with a core radius of 2 nm, a shell of up to 1 nm HgS followed by a final shell of up to 1.5 nm CdS were obtained. Electrons and holes were localized in the HgS shell giving rise to excitonic fluorescence.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Henglein, A., Top. Curr. Chem. 143, 113 (1988)Google Scholar
2 Bras, L. E., Appl. Phys. A. 53, 465 (1991)Google Scholar
3 Wang, Y., Herron, N., J. Phys. Chem. 95, 525 (1991)Google Scholar
4 Weller, H., Angew. Chem. Int. Ed. Engl. 32, 41 (1993)Google Scholar
5 Weller, H., Adv. Mater. 5, 88 (1993)Google Scholar
6 Vossmeyer, T., Katsikas, L., Giersig, M., Popovic, I. G., Diesner, K., Chemseddine, A., Eychmüller, A., Weller, H., J. Phys. Chem. 98, 7665 (1994)Google Scholar
7 Spanhel, L., Haase, M., Weller, H., Henglein, A., J. Am. Chem. Soc. 109, 5649 (1987)Google Scholar
8 Kayanuma, Y., Phys. Rev. B. 38, 9797 (1988)Google Scholar
9 Herron, N., Calabrese, J. C., Farneth, W. E., Wang, Y., Science 259, 1426 (1993)Google Scholar
10 Lee, G. S. H., Craig, D. C., Ma, I., Scudder, M. L., Bailey, T. D., Dance, I. G., J. Am. Chem. Soc. 110, 4863 (1988)Google Scholar
11 Strickler, P., Chem. Commun. 665 (1969)Google Scholar
12 Vossmeyer, T., Reck, G., Katsikas, L., Haupt, E. T. K., Schulz, B., Weller, H., submitted for publicationGoogle Scholar
13 Mews, A., Eychmüller, A., Giersig, M., Schooss, D., Weller, H., J. Phys. Chem. 98, 934 (1994)Google Scholar
14 Schooss, D., Mews, A., Eychmuller, A., Weller, H., Phys. Rev. B 49, 17072 (1994)Google Scholar