Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-14T23:37:43.918Z Has data issue: false hasContentIssue false

Nanodomain Size Distribution in Relaxor Ferroelectrics Determined from Temperature Dependent Raman Scattering

Published online by Cambridge University Press:  26 February 2011

Sanju Gupta*
Affiliation:
sgup@rocketmail.com, University of Missouri-Columbia, Electrical and Computer Engineering, 6th St. 303 EBW, Columbia, MO, 65211-2300, United States, 57388200948, 5738820397
Get access

Abstract

Relaxors (PZN, in particular) is an important class of self-assembled nanostructure composite ferroelectric oxides (or perovskite) materials. The interesting features associated with the nanoregions/nanodomains required to describe these relaxors give rise to the most relevant device related characteristics and peculiar physical properties in these materials. In addition, they possess astronomical property coefficients by themselves or when modified with lead titanate (PT) forming solid solution. In the past, we conducted temperature dependent Raman scattering studies on solid solution (1−x)PZN−xPT relaxors single crystals with varying composition; x = 0.02, 0.085, and 0.11. These studies were performed to obtain relevant information about lattice/phonon dynamics for matching the application criteria such as electromechanical actuators. We showed that the sharp structural phase transition occurs at or near 460 K which is a first-order transition by fitting two spectroscopic variables in Raman spectra for one of the representative bands occurring at 277 cm−1. Besides structural phase transition, polarization mechanism for the unpoled (x = 0.02) and poled (x = 0.05) specimens is also investigated to understand the polarization mechanism in relaxors using Raman spectroscopy. The difference in the case of poled specimen is accounted for by the influence of residual electric field. Poling also suggested an enhanced local ordering and the increase in the volume of the polar nano-regions. In the present report, we attempted to determine the nanopolar region size and distribution using the above mentioned temperature dependent Raman spectra. We discuss the most suitable mathematical form of nanodomain size distribution for such inhomogeneous material is log-normal and it is bimodal depending upon the temperature regime in addition to composition. These studies helped to determine the size distribution of nanoscopic embodiments in relaxor ferroelectrics using Raman spectroscopy as a function of temperature which is a dynamical phenomenon.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Smolensky, G. A. et. al. in Ferroelectrics and Related Materials (Gordon and Breach, New York, 1984).Google Scholar
2. Lines, M. E. and Glass, A. M., in Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, London 1977).Google Scholar
3. Cross, L. E., Ferroelectrics 76, 241 (1987), ibid 151, 305; K. Uchino, Ferroelectrics 151, 321 (1994)Google Scholar
4. Mulvihill, M. L., Cross, L. E., and Uchino, K., J. Am. Ceram. Soc. 78, 3345 (1995).Google Scholar
5. Bimberg D, D., Grundmann, M., and Ledentsov, N. N., in Quantum Dot Heterostructures, John Wiley & Sons Ltd.: 1998.Google Scholar
6. Gupta S, S., Katiyar, R. S., and Bhalla, A. S., Mater. Res. Symp. Proc. 457, 145 (1999) and references therein; G. Burns and F. H. Dacol, Ferroelectrics 104, 25 (1990); G. Burns G and F. H. Dacol, Solid State Comm. 48, 853 (1983).Google Scholar
7. Siny, I., Lushnikov, S., and Katiyar, R. S., Phys. Rev. B 56, 7962 (1997).Google Scholar
8. Lines, M. E. and Glass, A. M., Principles and Applications of Ferroelectrics and Related Materials; Oxford University Press, London, 1977.Google Scholar
9. Uchino, K., Ferroelectrics 151, 321 (1994).Google Scholar
10. Park, S. -E. and Shrout, T. R., J. Appl. Phys. 82, 1804 (1997); S. -F. Lin, S. –E. park, T. R. Shrout and L. E. Cross, J. Appl. Phys. 85, 2810 (1999); N. deMathan, E. Husson, G. Galvarin, J. R. Gavarri, A. W. Hewat, and A. Morell, J. Phys.: Condens. Matter 3, 8159 (1991); E. Husson, L. Abello and A. Morell, Mater. Res. Bull. 25, 539 (1990).Google Scholar
11. Khuchua, N. P., Bokov, V. A., Myl'nikova, I. E., Sov. Phys.-Solid State 10, 192 (1968) references therein; Y. Yokomizo, T. Takahashi, and S. Nomura, Ferroelectrics 22, 863 (1979).Google Scholar
12. Powder Diffraction File, Card No. 22–663. International Center for Diffraction Data, Newtowne Square, PA (1991).Google Scholar
13. Kuwata, J., Uchino, K., and Nomura, S., Ferroelectrics 37, 579 (1981).Google Scholar
14. Nomura, S., Takahashi, T., and Yokomizo, Y., J. Phys. Soc. Japan 27, 262 (1969); J. Kuwata, K. Uchino, and S. Nomura, Jpn. J. Appl. Phys. 21, 1298 (1982); S. Nomura, and H. Arima, Jpn. J. Appl. Phys. 11, 358 (1972).Google Scholar
15. Park, S. E. and Shrout, T. R., J. Appl. Phys. 82, 1804(1997).Google Scholar
16. Lin, S. F., Park, S. E., Shrout, T. R., and Cross, L. E., J. Appl. Phys. 85, 2810 (1999).Google Scholar
17. For review, Gupta, S., Katiyar, R. S., Bhalla, A. S., Integrated Ferroelectrics 12, xx (1999).Google Scholar
18. Kanemitsu, Y., Uto, H., Masumoto, Y., Matsumoto, T., Futagi, T. and Mimura, H., Phys. Rev. B 48, 2827 (1993); I. H. Cambell and P. M. Fauchet, Sol. Stat. Comm. 58, 739 (1986).Google Scholar
19. Gill, P. R., Murray, W., and Wright, M. H., The Levenberg-Marquardt Method, Sec. 4.7.3 in Practical Optimization, (Academic Press, London, 1981), pp.136137.Google Scholar
20. Vikhnin, V. S., Blinc, R., and Pirc, R., Ferroelectrics 240, 1621 (2000).Google Scholar
21. Cheng, Z. Y. et. al. Phys. Rev. B 57, 8166 (1998).Google Scholar
22. Westphal, V., Kleemann, W., Glinchuk, M. D. MD. Phys. Rev. Lett. 68, 847 (1992).Google Scholar
23. Kleemann, W., J. Korean Phys. Soc. 32, S939 (1998).Google Scholar
24. Khuchua, N. P., Bokov, V. A., Myl'nikova, I. E., Sov. Phys.-Solid State 10, 192 (1968); R. Sommer, N. K. Yushin, J. J. Van der Klink, Phys. Rev. B 48, 13 320 (1993); 24. C.- S. Tu, F.-C. Chao, C.-H. Yeh, C.-L. Tsai and V. H. Schmidt, Phys. Rev. B 60, 6348 (1999).Google Scholar