Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T18:06:44.305Z Has data issue: false hasContentIssue false

Nanomatertials as Low Density Lipoprotein (LDL) Sensors

Published online by Cambridge University Press:  01 February 2011

Tao Tang
Affiliation:
Department of Electrical Engineering – Electrophysics, University of Southern California Los Angeles, California 90089, U. S. A
Xiaolei Liu
Affiliation:
Department of Electrical Engineering – Electrophysics, University of Southern California Los Angeles, California 90089, U. S. A
Chao Li
Affiliation:
Department of Electrical Engineering – Electrophysics, University of Southern California Los Angeles, California 90089, U. S. A
Bo Lei
Affiliation:
Department of Electrical Engineering – Electrophysics, University of Southern California Los Angeles, California 90089, U. S. A
Daihua Zhang
Affiliation:
Department of Electrical Engineering – Electrophysics, University of Southern California Los Angeles, California 90089, U. S. A
Mahsa Rouhanizadeh
Affiliation:
Deptartment of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, U. S. A
Tzung Hsiai
Affiliation:
Deptartment of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, U. S. A
Chongwu Zhou
Affiliation:
Department of Electrical Engineering – Electrophysics, University of Southern California Los Angeles, California 90089, U. S. A
Get access

Abstract

In2O3 nanowire and carbon nanotube transistors were used to study the chemical gating effects in response to LDL particles. Low density lipoprotein (LDL) cholesterol in blood constitutes a risk factor for coronary artery disease (heart attack). The interactions of LDL particles with these two different surfaces were investigated. The degree of LDL particles binding to carbon nanotubes was ten-fold higher than to In2O3 nanowires possibly owing to the hydrophobic/hydrophilic interactions. The conductance of field effect transistors (FET) based on nanowires and nanotubes showed complementary responses after exposure to LDL particles. While In2O3 nanowire transistors exhibited higher conductance accompanied by a negative shift of the threshold voltage, nanotube transistors displayed a lower conductance. This phenomenon was attributed to the complementary doping between the n-type In2O3 nanowires and p-type carbon nanotubes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kong, J., Franklin, N. R., Zhou, C., Chapline, M. G., Peng, S., Cho, K., and Dai, H., Science 287, 622 (2000).Google Scholar
2. Collins, P. G., Bradley, K., Ishigami, M., and Zettl, A., Science 287, 1801 (2000).Google Scholar
3. Li, C., Zhang, D., Liu, X., Han, S., Tang, T., Han, J., and Zhou, C., Appl. Phys. Lett. 82, 1613 (2003).Google Scholar
4. Comini, E., Faglia, G., Sberveglieri, G., Pan, Z. W., and Wang, Z. L., Appl. Phys. Lett. 81, 1869 (2002).Google Scholar
5. Kolmakov, A., Zhang, Y. X., Cheng, G. S., and Moskovits, M., Adv. Mater. 15, 997 (2003).Google Scholar
6. Cui, Y., Wei, Q., Park, H., and Lieber, C. M., Science 293, 1289 (2001).Google Scholar
7. Chen, R. J., Bangsaruntip, S., Drouvalakis, K. A., Kam, N. W. S., Shim, M., Li, Y., Kim, W., Utz, P. J., and Dai, H., Prec. of Natio. Acad. of Science 100, 4984 (2003).Google Scholar
8. Star, A., Gabriel, J. P., Bradley, K., and GrUner, G., Nano Lett. 3, 459 (2003).Google Scholar
9. Li, C., Lei, B., Zhang, D., Liu, X., Han, S., Tang, T., Rouhanizadeh, M., Hsiai, T., and Zhou, C., Appl. Phys. Lett. 83, 4014 (2003).Google Scholar
10. Li, Z., Chen, Y., Li, X., Kamins, T. I., Nauka, K., and Williams, R. S., Nano Lett. 4, 245 (2004).Google Scholar
11. Hahm, J., and Lieber, C. M., Nano Lett. 4, 51 (2004).Google Scholar
12. Yamazoe, N., Chemical Sensor Technology Vol.3, (Elsevier 1991).Google Scholar
13. Sevanian, A, Bittolo-Bon, G, Cazzolato, G, Hodis, H, Hwang, J, Zamburlini, A, Maiorino, M, Ursini, F. J Lipid Res. 38, 419 (1997).Google Scholar
14. Hevonoja, T., Pentikainen, M. O., Hyvonen, M. T., Kovanen, P. T., and Ala-Korpela, M., Biochimica et Biophysica Acta 189, 1488 (2000).Google Scholar