Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T08:37:23.770Z Has data issue: false hasContentIssue false

Nanoparticle Ring Structures based on Protein Assemblies

Published online by Cambridge University Press:  26 February 2011

Silke Behrens
Affiliation:
silke.behrens@itc-cpv.fzk.de, Forschungszentrum Karlsruhe, Institut für Technische Chemie, Postfach 3640, Karlsruhe, N/A, 76021, Germany
Wilhelm Habicht
Affiliation:
wilhelm.habicht@itc-cpv.fzk.de
Kerstin Wagner
Affiliation:
rake@imb-jena.de
Eberhard Unger
Affiliation:
eunger@fli-leibniz.de
Get access

Abstract

The bottom-up wet-chemical synthesis of inorganic materials provides tools for generating nanostructures from particles to one-dimensional structures, but these conventional chemical techniques usually offer little control over the deposition of metals or metal particles into nanosized ring structures although interesting properties and applications, e.g., Aharonov-Bohm rings are expected. Our results provide a straightforward and rapid wet-chemical synthesis to ring-like metal particle arrays. Applying appropriate conditions, tubulin dimers, proteins of 4-5 nm diameter and a length of 8 nm, self-assemble by specific recognitions capabilities into defined superstructures. Ca2+ ions, e.g., direct the assembly of tubulin into 50 nm sized, ring-like structures. In our approach, these ring-like protein assemblies serve as a functionalized scaffold where the metal particles are generated in situ and deposited into spiral-shaped particle arrays, reflecting the arrangement of the protein subunits within the assembly. The resulting size and crystalline structure of the materials were examined using transmission electron microscopy and scanning force microscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Sun, Y., Xia, Y., Science 298, 2176 (2002).Google Scholar
2 Metraux, G., Mirkin, C., Advanced Mater. 17, 412 (2005).Google Scholar
3 Jin, R., Cao, Y., Mirkin, C., Kelly, K., Schatz, G., Zheng, J., Science 294, 1901 (2001).Google Scholar
4 Wiley, B., Sun, Y., Mayers, B., Xia, Y., Chem. Eur. J. 11, 454 (2005).Google Scholar
5 McLellan, J., Geissler, M., Xia, Y., J. Am. Chem. Soc. 126, 10830 (2004).Google Scholar
6 Yang, F., Goedel, W., Nano Lett. 4, 1193 (2004).Google Scholar
7 Zinchenko, A., Yoshikawa, K., Baigl, D., Adv. Mater., DOI: 10.1002/adma.200501549 (2005).Google Scholar
8 Behrens, S., Rahn, K., Habicht, W., Böhm, K. J., Rösner, H., Dinjus, E., Unger, E., Adv. Mater. 14, 1621 (2002).Google Scholar
9 Behens, S., Wu, J., Habicht, W., Unger, E., Chem. Mater. 16, 3085 (2004).Google Scholar
10 Kirsch, R., Mertig, M., Pompe, W., Wahl, R., Sadowski, G., Böhm, K.-J., Unger, E., Thin Solid Films 305, 248 (1997).Google Scholar
11 Mertig, M., Kirsch, R., Pompe, W., Appl. Phys. A 66, 723 (1998).Google Scholar
12 Boal, A. K., Headly, T. J., Tissot, R. G., Bunker, B. C., Adv. Funct. Mater. 14, 19 (2004).Google Scholar
13 Böhm, K. J., Stracke, R., Mühlig, P., Unger, E., Nanotechnology 12, 238 (2001).Google Scholar
14 Dennis, J. R., Howard, J., Vogel, V., Nanotechnology 10, 232 (1999).Google Scholar
15 Limberis, L., Steward, R. J., Nanotechnology 11, 47 (2000).Google Scholar
16 Bachand, G. D., Rivera, S. B., Boal, A. K., Gaudioso, J., Liu, J., Bunker, B. C., Nano Letters 4, 817 (2004).Google Scholar
17 Unger, E., Vater, W., Böhm, K.-J., Electron Microsc. Rev. 3, 355 (1990).Google Scholar
18 Vater, W., Böhm, K. J., Unger, E., Cell Motility and the Cytoskeleton 36, 76 (1997).Google Scholar