Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T07:01:45.888Z Has data issue: false hasContentIssue false

Near Interface Oxide Degradation in High Temperature Annealed Si/SiO2/Si Structures

Published online by Cambridge University Press:  21 February 2011

R. A. B. Devine
Affiliation:
CNS-CNET France Télécom, BP 98,38243 Meylan, France
D. Mathiot
Affiliation:
CNS-CNET France Télécom, BP 98,38243 Meylan, France
W. L. Warren
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-5800
D. M. Fleetwoodi
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185-5800
Get access

Abstract

Degradation of 430 nra thick SiO2 layers in Si/SiO2/Si structures which results from high temperature annealing (1320°C) has been studied using electron spin resonance, infra-red absorption spectroscopy and refractive index measurements. Large numbers of oxygen-vacancies are found in a region ≤ 100 nm from each Si/SiO2 interface. Two types of paramagnetic defects are observed following γ or X-irradiation or hole injection. The 1106 cm−l infra-red absorption associated with O interstitials in the Si substrate is found to increase with annealing time. The infra-red and spin resonance observations can be explained qualitatively and quantitatively in terms of a model in which oxygen atoms are gettered from the oxide into the under or overlying Si, the driving force being the increased O solubility limit associated with the anneal temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Tromp, R., Rubloff, G. W., Balk, P., LeGoues, F. K. and van Loenen, E. J., Phys. Rev. Letts. 55 2332 (1985)Google Scholar
2 Liehr, M., Lewis, J. E. and Rubloff, G. W., J. Vac. Sci. Tech. A5 1559 (1987)Google Scholar
3 Rubloff, G. W., Mat. Res. Soc. Symp. Proc. 105 11 (1988)Google Scholar
4 Schwank, J. R. and Fleetwood, D. M., Appl. Phys. Lett. 53 770 (1988)Google Scholar
5 Fleetwood, D. M. and Scofïeld, J. H., Phys. Rev. Letts. 64 579 (1990)CrossRefGoogle Scholar
6 d’Heurle, F. M., Electrochem. Soc. Ext. Abstr. 90–2 446 (1990)Google Scholar
7 Feigl, F. J., Fowler, W. B. and Yip, K. L., Sol. State Commun. 14 225 (1974)Google Scholar
8 Vanheusden, K. H. and Stesmans, A., J. Appl. Phys. 74 275 (1993); W. L. Warren, D. M. Fleetwood, M. R. ShaneyfeltJ. R. Schwank, P. S. Winokur and R. A. B. Devine, Appl. Phys. Lett. 62 3330 (1993)Google Scholar
9 Leray, J-L., Margail, J. and Devine, R. A. B., Mat. Sci. Eng. B12 153 (1992)Google Scholar
10 Hrostowski, H. J. and Kaiser, R. H., Phys. Rev. 107 966 (1957)Google Scholar
11 Stavola, M., Patel, J. R., Kimmerling, L. C. and Freeland, P. C., Appl. Phys. Lett. 42 73 (1983)Google Scholar
12 Mikkelsen, J. C. Jr., Appl. Phys. Lett. 45 1187 (1984)Google Scholar
13 Devine, R. A. B., Mathiot, D., Warren, W. L., Fleetwood, D. M. and Aspar, B., Appl. Phys. Lett, (in press, November 1993)Google Scholar
14 Newman, R. C. and Willis, J. B., J. Phys. Chem. Solids 26 373 (1965)Google Scholar
15 Devine, R. A. B., Warren, W. L., Shaneyfelt, M. R., Fleetwood, D. M. and Aspar, B., Nucl. Inst Meth. in Phys. Res. B (in press, 1993)Google Scholar
16 Golanski, A., Devine, R. A. B. and Oberlin, J-C., J. Appl. Phys. 56 1572 (1984)Google Scholar