Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T06:59:11.515Z Has data issue: false hasContentIssue false

Negative Thermal Expansion

Published online by Cambridge University Press:  11 February 2011

Arthur W. Sleight*
Affiliation:
Department of Chemistry, Oregon State University, Corvallis, OR 97331–4003
Get access

Abstract

Negative thermal expansion behavior has been found in many oxides where oxygen or a cation has a coordination number of two. The MO2, AM2O7, A2M3O12, AMO5, and AO3 families, where A is an octahedral cation, M a tetrahedral cation, and the oxygen coordination is two, have been investigated for their thermal expansion properties. Negative thermal expansion has been found in all families except the AO3 family, where very low thermal expansion was found in the case of TaO2F. Open networks are necessary to allow free transverse thermal motion of oxygen, which is the apparent cause negative thermal expansion in these families. This openness leads to two problems. One is that structure collapse transitions tend to occur as the temperature is lowered. There is little or no thermal expansion below this transition. A solution to this problem is to maintain sufficient ionic character in the bonds holding the network together. The other problem is that when the networks become sufficiently open, they tend to hydrate. This hydration destroys the negative thermal expansion of the network.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mary, T.A., Evans, J.S.O., Sleight, A.W., and Vogt, T., Science 272, 90 (1996).Google Scholar
2. Woodcock, D.A., Lightfoot, P.L., Villaescusa, L.A., Díaz-Cabañas, M.-J., Camblor, M.A., and Engberg, D., Chem. Mater. 11, 2508 (1999).Google Scholar
3. Attfield, M.P. and Sleight, A.W., Chem. Commun., 601 (1998).Google Scholar
4. Attfield, M.P. and Sleight, A.W., Chem. Mater. 10, 2013 (1998).Google Scholar
5. Evans, J.S.O., Mary, T.A., and Sleight, A.W., J. Solid State Chem. 133, 580 (1997).Google Scholar
6. Evans, J.S.O., Mary, T.A., and Sleight, A.W., J. Solid State Chem. 137, 148 (1998).Google Scholar
7. Forster, P.M., Yokochi, A. and Sleight, A. W., J. Solid State Chem. 140, 157 (1998).Google Scholar
8. Forster, P.W. and Sleight, A.W., Inter. J. Inorg. Mater. 1, 123 (1999).Google Scholar
9. Evans, J.S.O. and Mary, T.A., Inter. J. Inorg. Mater. 2, 143 (2000).Google Scholar
10. Evans, J.S.O., Mary, T.A., and Sleight, A.W., J. Solid State Chem. 120, 101 (1995).Google Scholar
11. Amos, T.G., PhD. Thesis, Oregon State University, 2001.Google Scholar
12. Evans, J.S.O., Mary, T.A., Vogt, T., Subramanian, M. A., and Sleight, A.W., Chem. Mater. 8, 2809 (1996).Google Scholar
13. Lind, C., Wilkinson, A.P., Hu, Z., and Jorgensen, J.D., Chem. Mater. 10, 2335 (1998).Google Scholar
14. Artioli, G., in Energy Modeling of Minerals, edited by Gramaccioli, C.M. (EMU Notes in Mineralogy, Vol. 4), in press.Google Scholar
15. Sleight, A.W., Annual Review of Materials Science 28, 29 (1998).Google Scholar
16. Sleight, A.W., Inorg. Chem. 37, 2854 (1998).Google Scholar
17. Sleight, A.W., Curr. Opin. Solid State Mater. Sci. 3, 128 (1998).Google Scholar
18. Shirane, G. and Takeda, A., J. Phys. Soc. Jpn. 7, 1 (1952).Google Scholar
19. Cruickshank, D.W.J., Acta Cryst. 9, 754 (1956).Google Scholar
20. Dove, M.T., Heine, V., and Hammonds, K.D., Mineral. Mag. 59, 629 (1995).Google Scholar
21. Beccara, S., Dalba, G., Fornasini, P., Sanson, R., and Rocca, F., Phys. Rev. Lett. 89, 25503 (2002).Google Scholar
22. Tao, J.Z. and Sleight, A.W., J. Solid State Chem., in press.Google Scholar
23. Taylor, D., Br. Ceram. Trans. 84, 9 (1985).Google Scholar
24. Li, J., Yokochi, A., Amos, T.G., Sleight, A.W., Chem. Mater. 14, 2602 (2002).Google Scholar
25. Tao, J.Z. and Sleight, A.W., J. Phys. Chem. Solids, in press.Google Scholar
26. Lightfoot, P., Woodcock, D.A., Maple, M.J., Villaesusa, L.A., and Wright, P.A., J. Mater. Chem. 11, 212 (2001).Google Scholar
27. Korthuis, V., Khosrovani, N., Sleight, A.W., Roberts, N., Dupree, R. and Warren, W.W. Jr, Chem. Mater. 7, 412 (1995).Google Scholar
28. Taylor, D., Br. Ceram. Trans. 83, 5 (1984).Google Scholar
29. Withers, R.L., Tabira, Y., Evans, J.S.O., King, I.J., Sleight, A.W., J. Solid State Chem. 157, 186 (2001).Google Scholar
30. Khosrovani, N., Korthuis, V., and Sleight, A.W., Inorg. Chem. 35, 485 (1996).Google Scholar
31. Khosrovani, N. and Sleight, A.W., J. Solid State Chem. 121, 2 (1996).Google Scholar
32. Khosrovani, N., Sleight, A. W. and Vogt, T., J. Solid State Chem. 132, 355 (1997).Google Scholar
33. Evans, J.S.O., Hanson, J.C., and Sleight, A.W., Acta Crystallogr. Sect. B. 54, 705 (1998).Google Scholar
34. Withers, R.L., Evans, J.S.O., Hanson, J., and Sleight, A.W., J. Solid State Chem. 137, 161 (1998).Google Scholar
35. Evans, J.S.O., David, W.I.F., and Sleight, A.W., Acta Crystallogr. B 55, 333 (1999).Google Scholar
36. Duan, N., Kameswari, U., and Sleight, A.W., J. Amer. Chem. Soc. 121 (44), 10432 (1999).Google Scholar
37. Ravindran, T.R., Arora, A. K., and Mary, T.A., Phys. Rev. Lett. 84, 3879 (2000).Google Scholar
38. Cao, D., Bridges, F., Kowach, G.R., and Ramirez, A.P., Phys. Rev. Lett. 89, 215902 (2002)Google Scholar
39. Evans, J.S.O., Hu, Z., Jorgensen, J.D., Argyriou, D.N., Short, S. and Sleight, A.W., Science 275, 61 (1997).Google Scholar
40. Teslic, S., Jorgensen, J.D., Hu, Z.., Short, S., Argyriou, D.N., Evans, J.S.O., and Sleight, A.W., Physica B: Condes. Matter 241–243, 370 (1998).Google Scholar
41. Hu, Z., Jorgensen, J.D., Teslic, S., Short, S., Argyriou, D.N., Evans, J.S.O., and Sleight, A.W., Physica B: Condes. Matter 241–243, 370 (1998).Google Scholar
42. Jorgensen, J.D., Hu, Z., Teslic, S., Argyriou, D.N., Short, S., Evans, J.S.O., and Sleight, A.W., Phys. Rev. B 59, 215 (1999).Google Scholar
43. Evans, J.S.O., Jorgensen, J.D., Short, S., David, W.I.F., Ibberson, R.M., and Sleight, A.W., Phys. Rev. B: Condes. Matter Mater. Phys. 60, 14643 (1999).Google Scholar
44. Jorgensen, J.D., Hu, Z., Short, S., Sleight, A.W., and Evans, J.S.O., J. Appl. Physics 89, 3184 (2001).Google Scholar
45. Perottoni, C.A. and da Jornada, J.A.H., Science 280, 886 (1998).Google Scholar
46. Chen, B., Muthu, D. V. S., Liu, Z. X., Sleight, A. W., Kruger, M. B., Phys. Rev. B: Condens. Matter Mater. Phys. 64, 214111 (2001).Google Scholar
47. Muthu, D.V.S., Chen, B., Sleight, A.W., Wrobel, J.M., Kruger, M.B., Solid State Communications 122, 25 (2002).Google Scholar
48. Closmann, C., Sleight, A.W., and Haygarth, J.C., J. Solid State. Chem. 139, 424 (1998).Google Scholar
49. Kameswari, U. and Sleight, A.W., Inter. J. Inorg. Mater. 2, 333 (2000).Google Scholar
50. Kutty, K.V.G., Asuvathraman, R., Mathews, C.K., and Varadaraju, U.V., Mat. Res. Bull. 29, 1009 (1994).Google Scholar
51. Woodcock, D.A., Lightfoot, P., and Smith, R.I., Mater. Res. Soc. Proc. 547, 191 (1999).Google Scholar
52. Mary, T.A. and Sleight, A. W, J. Mater. Res. 14, 912 (1999).Google Scholar
53. Amos, T., Yokochi, A., and Sleight, A.W., J. Solid State Chem. 141, 303 (1998).Google Scholar
54. Amos, T.G. and Sleight, A.W., J. Solid State Chem. 160, 230 (2001).Google Scholar
55. Tao, J. Z. and Sleight, A.W., J. Solid State Chem., in press.Google Scholar
56. Khosrovani, N. and Sleight, A.W., Inter. J. Inorg. Mater. 1, 3 (1999).Google Scholar