Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T07:07:34.418Z Has data issue: false hasContentIssue false

A New Method of Depositing Amorphous Hydrogenated Silicon Carbide with Low Ir-Detected Microstructure

Published online by Cambridge University Press:  21 February 2011

Hsueh Yi Lu
Affiliation:
Department of Chemical Engineering, Northwestern University, Evanston, Illinois 60208–3120
Mark A. Petrich
Affiliation:
Department of Chemical Engineering, Northwestern University, Evanston, Illinois 60208–3120
Get access

Abstract

We report a new method of depositing amorphous hydrogenated silicon carbide thin films with low IR-detected microstructure in a plasma-enhanced chemical vapor deposition reactor. Films prepared at various conditions are studied with Fourier-transform infrared absorption. Their optical band gaps and photoconductivities are also measured. The amount of microstructure can be controlled by adjusting the powered-electrode potential during deposition, and the microstructural changes are reflected in the film properties. By applying an external dc voltage to the rf-excited powered electrode, we can shift the optimal deposition temperature from 250 °C to as low as 100 °C. We find that films deposited at positive powered-electrode potential and low substrate temperature exhibit less microstructure, wider optical band gaps, and faster deposition rates than films deposited at conventional conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hamakawa, Y. and Okamoto, H., Adv. Solar Energy 5, 1 (1989).Google Scholar
2. LeComber, P.G., J. Non-Cryst. Solids 115, 1 (1989).CrossRefGoogle Scholar
3. Anderson, D. A. and Spear, W. E., Phil. Mag. 35, 1 (1977).CrossRefGoogle Scholar
4. Morimoto, A., Miura, T., Kumeda, M., and Shimizu, T., J. Appl. Phys. 53, 7299 (1982).CrossRefGoogle Scholar
5. Boulitrop, F., Bullot, J., Gauthier, M., Schmidt, M. P., and Catherine, Y., Solid State Commun. 54, 107 (1985).CrossRefGoogle Scholar
6. Schmidt, M. P., Bullot, J., Gauthier, M., Cordier, P., Solomon, I., and Tran-Quoc, H., Phil. Mag. B6, 581 (1985).CrossRefGoogle Scholar
7. Bullot, J. and Schmidt, M. P., Phys. Stat. Sol. (b) 143, 345 (1987).CrossRefGoogle Scholar
8. Siebert, W., Carius, R., Fuhs, W., and Jahn, K., Phys. Stat. Sol. (b) 140, 311 (1987).CrossRefGoogle Scholar
9. Shimizu, T., Kumeda, M., and Kiriyama, Y., Solid State Commun. 37, 699 (1981).CrossRefGoogle Scholar
10. Petrich, M. A., Gleason, K. K., and Reimer, J. A., Phys. Rev. B 36, 9722 (1987).CrossRefGoogle Scholar
11. Mahan, A. H., von Roedern, B., Williamson, D. L., and Madan, A., J. Appl. Phys. 57, 2717 (1985).CrossRefGoogle Scholar
12. Mahan, A. H., Raboisson, P., and Tsu, R., Appl. Phys. Lett. 50, 335 (1987).CrossRefGoogle Scholar
13. Bhattacharya, E. and Mahan, A.H., Appl. Phys. Lett. 52, 1587 (1988).CrossRefGoogle Scholar
14. Lu, H.Y. and Petrich, M.A., J. Appl. Phys. 71, 1693 (1992).CrossRefGoogle Scholar
15. Koropecki, R.R., Alvarez, F., and Arce, R., J. Appl. Phys. 69, 7805 (1991).CrossRefGoogle Scholar
16. Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical Recipes: The Art of Scientific Computing, (Cambridge University Press, New York, 1986).Google Scholar
17. Swanepoel, R., J. Phys. E: Sci. Instrum., 16, 1214 (1983).CrossRefGoogle Scholar
18. Goodman, A. M., Applied Optics, 17, 2779 (1978).CrossRefGoogle Scholar
19. Chapman, B. N., Glow Discharge Processes, (John Wiley & Sons, New York, 1980).Google Scholar