Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-04T01:56:50.740Z Has data issue: false hasContentIssue false

New Structural Investigations in the Cu2Se(S)-In2Se3(S)/Cu2Se(S)-Ga2Se3(S) Phase Diagrams

Published online by Cambridge University Press:  31 January 2011

Christiane Stephan
Affiliation:
christiane.stephan@helmholtz-berlin.de, Helmholtz-Zentrum Berlin für Materialien und Energie, Materials for Solar Energy, Institute of Technology, Berlin, Germany
Susan Schorr
Affiliation:
susan.schorr@helmholtz-berlin.de, Free University of Berlin, Department of Geoscience, Berlin, Germany
H.W. Schock
Affiliation:
hans-werner.schock@helmholtz-berlin.de, Helmholtz-Zentrum Berlin für Materialien und Energie, Materials for Solar Energy, Institute of Technology, Berlin, Germany
Get access

Abstract

Non-stoichiometry is a characteristic feature of ternary chalcopyrites like Cu-III-VI2 (III=In,Ga; VI=S,Se). The results of a comparative study of structural trends within the homogeneity region of the chalcopyrite type α-phase of the Cu2Se(S)-In2Se3(S) and Cu2Se(S)-Ga2Se3(S) quasibinary phase diagrams are presented. Powder samples of Cu-rich and Cu-poor [Cu2Se(S)]1-y-[In2Se3(S)]y as well as [Cu2Se(S)]1-y-[Ga2Se3(S)]y alloys were prepared (0.4<y<0.6) by solid state reaction of the elements (T=850°C) and investigated by X-ray powder diffraction and electron microprobe analysis. It was shown that the grain size depends on composition and structural parameters. The tetragonal distortion η=c/2a has been determined for the different trivalent cations and influences the microstructure in Cu-poor Cu1-xIII1+x/3VI2 samples. In Cu-rich samples the Cu-content is in all cases the driving force for the formation of the homogeneous microstructure observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Repins, I. Contreras, M. Progr. Photovoltaics 16 (2008), pp. 235239.Google Scholar
2. Rogacheva, E. I. Inst. Phys. Conf. Ser. No 152 (1997), pp. 114.Google Scholar
3. Hahn, H. Frank, G. Klinger, W. Anorg. und Allg. Chem. 271 (1953), pp.153170.Google Scholar
4. Gödecke, T., Haalboom, T. Ernst, F. Zeitschr. f. Metallkunde 91 (2000), pp. 622634.Google Scholar
5. Mikkelsen, J. C. J. of Electr. Materials 10 (1981), pp. 541558.Google Scholar
6. Lehmann, S. Marron, D. Fuertes, Tovar, M. Tomm, Y. Wolf, Ch., Schorr, S. Schedel-Niedrig, Th., Arushanov, E. Lux-Steiner, M. Ch., Phys. Stat. Sol. a 1-5 (2009)/DOI 10.1002.pssa200881221.Google Scholar
7. Binsma, J. J.M, Giling, L.J. Bloem, J. J. of Cryst. Growth 50 (1980), pp. 429436.Google Scholar
8. Kokta, M. Carruthers, J. R. Grasso, M. J. of Electr. Materials 5 (1976), pp.6989.Google Scholar
9. Merino, J. M. Vidales, J. L. Martin de, J. of Appl. Phys. 80 (1996), pp. 56105616.Google Scholar
10. Zahn, G. Paufler, P. Cryst. Res. Technol. 23 (1988) 499, pp. 499507.Google Scholar
11. Martin, T. Merino, J. M. Vidales, J.L.M. de, Adv. Mat. for Opt. and Electr. 8 (1998), pp. 147155.Google Scholar
12. Rodriguez-Carvajal, J., Physica B 192 (1993), p. 55.Google Scholar
13. Abou-Ras, D., Caballero, R. Kaufmann, C. A. Nichterwitz, M. Sakurai, K. Schorr, S. Unold, T. Schock, H. W. Phys. Stat. Sol. (RRL) 2 (2008), pp.135137.Google Scholar
14. Schlenker, T. Valero, M. Luis, Schock, H. W. and Werner, J. H. J. of Cryst. Growth 264 (2004), pp. 178183.Google Scholar