Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T06:47:43.599Z Has data issue: false hasContentIssue false

Non-Equilibrium Carrier Dynamics in a-Si:H/a-SiC:H Multilayers

Published online by Cambridge University Press:  21 February 2011

M. Petrauskas
Affiliation:
Vilnius University, Department of Semiconductor Physics, LI - 2054 Vilnius, Lithuania
J. Kolenda
Affiliation:
Vilnius University, Department of Semiconductor Physics, LI - 2054 Vilnius, Lithuania
A. Galeckas
Affiliation:
Vilnius University, Department of Semiconductor Physics, LI - 2054 Vilnius, Lithuania
R. Schwarz
Affiliation:
Technical University of Munich, Physics Department E 16, W-8046 Garching, Germany
F. Wang
Affiliation:
Technical University of Munich, Physics Department E 16, W-8046 Garching, Germany
T. Muschik
Affiliation:
Technical University of Munich, Physics Department E 16, W-8046 Garching, Germany
T. Fischer
Affiliation:
Technical University of Munich, Physics Department E 16, W-8046 Garching, Germany
H. Weinert
Affiliation:
Humboldt University of Berlin, Institute for Optics and Spectroscopy, O- 1040 Berlin, Germany
Get access

Abstract

For a series of a-Si:H/a-SiC:H quantum well structures and superlattices the diffusion coefficient for the lateral ambipolar motion of optically excited free carriers was measured using the transient grating technique. A significant dependence of the diffusion coefficient on the well layer thickness was found. With decreasing quantum well thickness the lateral mobility decreases. These observations may be explained assuming that scattering due to interface roughness is the dominant scattering process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Schwarz, R., Fischer, T., Hanesch, P., Muschik, T., Kolodzey, J., Cerva, H., Meyerheim, H. L., and Scherzer, B.M.U., Appl. Surface Sci. 50, 456(1991).Google Scholar
[2] Johnson, A.M., Auston, D. H., Smith, P. R., Bean, J. C., Harbison, J. P., and Kaplan, M., in Picosecond Phenomena, Springer-Verlag Berlin.Google Scholar
[3] Eichler, H.J., Gunther, P., and Pohl, D. W., Laser Induced Dynamic Gratings, Springer-Verlag, Berlin/Heidelberg 1986.Google Scholar
[4] Vaitkus, S., Jarasiunas, K., Gaubas, E., Jonikas, L., Pranaitis, R., and Subacius, L., IEEE J. Quant. Electr. QE-22, 1298 (1986).Google Scholar
[5] Weinert, H., Kolenda, J., and Petrauskas, M., Solid State Commun. 81, 467 (1992).Google Scholar
[6] Noll, G. and Göbel, E. O., J. Non-Cryst. Solids 97&98, 141 (1987).Google Scholar
[7] Hillmer, H., Forchel, A., Hansmann, S., Morohashi, M., Meier, H. P., and Ploog, K., Solid State Electronics 32, 1171 (1989).Google Scholar
[8] Hillmer, H., Forchel, A., Hansmann, S., Morohashi, M., Lopez, E., Meier, H. P., and Ploog, K., Phys. Rev. B 39, 10901 (1989).Google Scholar
[9] Komuro, S., Aoyagi, Y., Segawa, Y., Namba, S., Masuyama, A., Okamoto, H., and Hamakawa, Y., Appl. Phys. Lett. 42, 79 (1983).CrossRefGoogle Scholar