Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T07:12:32.216Z Has data issue: false hasContentIssue false

Novel Chemoenzymatic Synthesis of Azobenzene Functionalized Ribonucleic Acid

Published online by Cambridge University Press:  21 March 2011

Sucharita Roy
Affiliation:
Department of Chemistry, University of Delhi, Delhi-110007, India
Ramaswamy Nagarajan
Affiliation:
Center For Advanced Materials, Departments of Chemistry and Physics, University of Massachusetts, Lowell, MA 01854
Peichuan Wu
Affiliation:
Center For Advanced Materials, Departments of Chemistry and Physics, University of Massachusetts, Lowell, MA 01854
Sukant K. Tripathy
Affiliation:
Center For Advanced Materials, Departments of Chemistry and Physics, University of Massachusetts, Lowell, MA 01854
Jayant Kumar
Affiliation:
Center For Advanced Materials, Departments of Chemistry and Physics, University of Massachusetts, Lowell, MA 01854
Lynne Samuelson
Affiliation:
Natick Soldier Center, U.S Army Soldier & Biological Command, Natick, MA 01760
Ferdinando F. Bruno
Affiliation:
Natick Soldier Center, U.S Army Soldier & Biological Command, Natick, MA 01760
Get access

Abstract

Ribonucleic acids, often called a biological jack of all trades, contribute intimately to every aspect of gene expression, including the synthesis of other polypeptide biocatalysts. The fundamental importance of recurring structural motifs and the kinetics and energetics of the complex secondary and tertiary structure of RNA have been shown to be intimately linked with its functions in vivo. We have developed a novel enzymatic synthetic approach for covalent attachment of photoresponsive units into the RNA backbone. The synthetic conditions of this approach are extremely mild, involving the reverse micellar solubilization of nucleic acid along with lipase in apolar hydrocarbon solvents. Lipase catalyzed acylation of the 2' hydroxyl group in the ribose sugars of the RNA molecule has been used to incorporate photo-isomerizable azobenzene groups into the RNA strands. This micellar approach was envisaged for RNA functionalization while maintaining the conformational integrity of the macromolecular backbone in neutral buffer solution. The modification of RNA using covalently attached chromophores or fluorophores can be extended to other biomacromolecular matrices leading to the development of more versatile photoactive biopolymers. The photo-isomerizable groups incorporated in the RNA molecule can serve as optical ‘handles’ for the manipulation of the conformation of RNA and open new opportunities for biophotonic device applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a) Hamachi, I., Hiraoka, T., Yamada, Y. and Shinaki, S., Chem. Lett. 537 (1998). (b) K. Yamana, A. Yoshikawa, R. Noda and H. Nakano, Nucleosides and Nucleotides 17, 233 (1998).Google Scholar
2. Hosaka, T., Kawashima, K. and Sisido, M., J. Am. Chem. Soc. 116, 413 (1994).Google Scholar
3. Wasermann, N. H. and Erlanger, B.F., NATO Adv. Sci. Inst. Ser.; Ser. A 68 (1983).Google Scholar
4. Tanaka, M., Sato, T. and Tonezawa, Y., Langmuir 11, 2834 (1995).Google Scholar
5. Tsuchiya, S., J. Am. Chem. Soc. 121, 48 (1999).Google Scholar
6. Ulysee, L., Cubillos, J. and Chmielewski, J., J. Am. Chem. Soc. 117, 8466 (1995).Google Scholar
7. Smets, G., Adv. Polymer Sci. 50, 17 (1983).Google Scholar
8. Pieroni, O., Fissi, A. and Ciardelli, F., Photochem. Photobiol. 44, 785 (1986).Google Scholar
9. Irie, M., in Photophysical and Photochemical Tools in Polymer Science edited by Winnik, M.A, (Reidel Publishing Co. Dordrecht, 1986), pp 269291.Google Scholar
10. Viswanathan, N. K., Kim, D.Y., Bian, S., Williams, J., Liu, W., Li, L., Samuelson, L., Kumar, J. and Tripathy, S. K., J. Mater. Chem. 9, 1942 (1999).Google Scholar
11. Alva, K. S., Lee, T. S., Kumar, J. and Tripathy, S. K., Chem. Mat. 10(5), 1270 (1998).Google Scholar
12. Houben, J. L., Fissi, A., Bacciola, D., Rosato, N., Pieroni, O. and Ciardelli, F., Int. J. Biol. Macromol. 5, 94, (1983).Google Scholar
13. Fissi, A., Pieroni, O. and Ciardelli, F., Biopolymers 26, 1993 (1987).Google Scholar
14. Wainberg, M. A. and Erlanger, B. F., Biochemistry 10, 3816 (1971).Google Scholar
15. Willner, I., Rubin, S. and Riklin, A., J. Am. Chem. Soc. 113, 3321 (1991).Google Scholar
16. Erlanger, B. F., Wasermann, N. H., Copper, A. G. and Monk, R. J., Eur. J. Biochem. 61, 287 (1976).Google Scholar
17. Asanuma, H., Yoshida, T., Ito, T. and Komiyama, M., Tetrahedron Lett. 40, 7995 (1999).Google Scholar
18. Yamana, K., Yoshikawa, A. and Nakano, H., Tetrahedron Lett. 37, 637 (1996).Google Scholar
19. Asanuma, H., Ito, T. and Komiyama, M., Tetrahedron Lett. 39, 9015 (1998).Google Scholar
20. Hartley, G. S., J. Chem. Soc. 633 (1938).Google Scholar
21. Asanuma, H., Liang, X. and Komiyama, M., Tetrahedron Lett. 41, 1055 (2000).Google Scholar
22. Yang, C-L. and Gulari, E., Biotechnol. Prog. 10, 269 (1994).Google Scholar
23. Tsai, S-W., Lu, C-C. and Chang, C-S., Biotechnol. Bioeng. 51, 148 (1996).Google Scholar
24. Hayes, D. G. and Gulari, E., Biotechnol. Bioeng. 38, 507 (1991).Google Scholar
25. Fendler, J. H, in Membrane Mimetic Chemistry, (John Wiley & Sons: New York 1982).Google Scholar
26. Abraham, G., Murray, M.A. and John, V.T., Biotechnol. Lett. 10, 535 (1988).Google Scholar
27. Imre, V. E. and Luisi, P. L., Biochem. Biophys. Res. Commun. 107, 538 (1982).Google Scholar