No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
In this paper we describe an oxide molded tungsten process applied to the fabrication of a novel latching relay. The steps in the process are: deposition of a sacrificial oxide, patterning of the oxide, filling of the resulting mold with a blanket film of tungsten using chemical vapor deposition (CVD), and then the removal and planarization of excess tungsten through chemical mechanical polishing (CMP). The process for the incorporation of dielectric isolation has also been developed. The resulting tungsten structures are under high tensile stress, which appears to be compensated in process by the compressive stress of the oxide mold. All the steps are low temperature and the entire process is backend CMOS compatible. This process has been used to fabricate a latching relay which relies on the internal stress of the tungsten and always generates force in a pulling mode. Parts have been successfully fabricated and tested, the devices generate very high forces for a MEMS device and give reasonable contact resistances even without noble metal contacts.