Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-29T02:36:10.878Z Has data issue: false hasContentIssue false

Optical Properties of InAs/InP Planar Quantum Dot Microcavities

Published online by Cambridge University Press:  11 February 2011

Dan Dalacu
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, K1A 0R6, Canada
Daniel Poitras
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, K1A 0R6, Canada
Jacques Lefebvre
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, K1A 0R6, Canada
Philip J. Poole
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, K1A 0R6, Canada
Geoff C. Aers
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, K1A 0R6, Canada
Robin L. Williams
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, K1A 0R6, Canada
Get access

Abstract

Planar InAs/InP quantum dot microcavities using multi-layer SiO2/Ta2O5 Bragg reflectors have been studied in emission. The spectra exhibit collection optics-limited cavity linewidths of ∼1meV with the occasional ∼200μeV single-dot emission. Measurements as a function of incident power show quantum dot saturation behavior, with transfer of oscillator strength to the wetting layer outside the cavity stop band. Saturation behavior at fixed pump power is also observed as a function of decreasing temperature. Dispersion measurements as a function of emission angle show polarization splitting in qualitative agreement with theory.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Burstein, E. and Weisbuch, C. (Eds.), Confined Electrons and Photons, New Physics and Application, (NATO ASI Series B, Physics, Plenum, New York, 1993).Google Scholar
2. Yamauchi, T., Arakawa, Y. and Nishioka, M., Appl. Phys. Lett., 58, 2339 (1991).Google Scholar
3. Yang, G.M., MacDougal, M.H., Zhao, H. and Dapkus, P. D., J. Appl. Phys., 78, 3605, (1995).Google Scholar
4. Tanaka, K., Nakamura, T., Takamatsu, W., Yamanishi, M., Lee, Y. and Ishihara, T., Phys. Rev. Lett, 74, 3380 (1995).Google Scholar
5. Ohnesorge, B., Bayer, M., Forchel, A., Reithmaier, J.P., Gippius, N.A. and Tikhodeev, S.G., Phys. Rev. B, 56, R4367 (1997).Google Scholar
6. Weisbuch, C., Nishioka, M., Ishikawa, A. and Arakawa, Y., Phys. Rev. Lett., 69, 3314 (1992).Google Scholar
7. Gérard, J.M., Barrier, D., Marzin, J.Y., Kuszelewicz, R., Manin, L., Costard, E., Thierry-Mieg, V. and Rivera, T., Appl. Phys. Lett., 69, 449 (1996).Google Scholar
8. Graham, L.A., Huffaker, D.L., Deppe, D.G., Appl. Phys. Lett., 74, 2408 (1999).Google Scholar
9. Cao, H., Xu, J.Y., Xiang, W.H., Ma, Y., Chang, S.-H., Ho, S.T. and Solomon, G.S., Appl. Phys. Lett, 76, 3519(2000).Google Scholar
10. Michler, P., Kiraz, A., Zhang, L., Becher, C., Hu, E. and Imamoglu, A., Appl. Phys. Lett., 77, 184(2000).Google Scholar
11. Solomon, G.S., Pelton, M. and Yamamoto, Y., Phys. Rev. Lett., 86, 3903 (2001).Google Scholar
12. Bayer, M., Reinecke, T.L., Weidner, F., Larionov, A., McDonald, A. and Forchel, A., Phys. Rev. Lett, 86, 3168, (2001).Google Scholar
13. Reese, C., Becher, C., Imamoğlu, A., Hu, E., Gerardot, B.D. and Petroff, P.M., Appl. Phys. Lett., 78, 2279 (2001).Google Scholar
14. Yoshie, T., Scherer, A., Chen, H., Huffaker, D. and Deppe, D., Appl. Phys. Lett., 79, 114 (2001).Google Scholar
15. Gérard, J.M. and Gayral, B., Physica E, 9, 131 (2001).Google Scholar
16. Lefebvre, J., Poole, P.J., Fraser, J., Aers, G.C., Chithrani, D., Williams, R.L., J. Crystal Growth, 234, 391 (2002).Google Scholar
17. Poole, P.J., McCaffrey, J., Williams, R.L., Lefebvre, J. and Chithrani, D., J. Vac. Sci. Technol. B, 19, 1467 (2001).Google Scholar
18. Poole, P. J. and Aers, G. C., Appl. Phys. Lett., 80, 4867 (2002).Google Scholar
19. Park, S., Zapasskii, V., Wick, D.V., Nelson, T.R. Jr, Ell, C., Gibbs, H.M., Khitrova, G., Schülzgen, A., Kira, M., Jahnke, F. and Koch, S. W., Optics Express, 4, 512 (1999).Google Scholar