Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T20:16:12.907Z Has data issue: false hasContentIssue false

Optical Properties Of Tantalum Oxide Films Deposited On BK7 Substrates By Excimer Laser Ablation

Published online by Cambridge University Press:  10 February 2011

S. Boughaba
Affiliation:
National Research Council Canada, Integrated Manufacturing Technologies Institute, 800 Collip Circle, London, Ontario Canada N6G 4X8
M. U. Islam
Affiliation:
National Research Council Canada, Integrated Manufacturing Technologies Institute, 800 Collip Circle, London, Ontario Canada N6G 4X8
Get access

Abstract

Thin amorphous films of tantalum oxide were grown on borosilicate crown glass substrates by KrF excimer pulsed laser ablation of a Ta2O5 target, in an oxygen environment. The deposition was performed at a temperature of 250 or 400 °C, while the oxygen pressure was set in the range 5 to 30 mTorr. The optical properties of the tantalum oxide coatings, as evaluated by reflectance/transmittance spectrophotometry, were found to be dependent on the oxygen gas pressure. At a pressure of 5 mTorr, absorbing films were obtained, with extinction coefficients above 10−2 (at λ=633 nm), along with an optical energy band-gap as low as 0.7 eV. At a pressure of 10 mTorr and above, the coatings had refractive indices up to 2.25 (at λ=633 nm), extinction coefficients below 10−4 (for λ>390 nm), and an optical energy band-gap in the range 3.9 to 4.0 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 - Harrop, P. J. and Campbell, D. S., Thin Solid Films 2, 273292 (1968).Google Scholar
2 - Traylor-Kruschwitz, J. D. and Pawlewicz, W. T., Appl. Optics 36(10), 2157 (1997).Google Scholar
3 - Chaneliere, C., Autran, J. L., Devine, R. A. B., and Balland, B., Materials Science and Engineering R22, 269322 (1998).Google Scholar
4 - Rubio, F., Denis, J., Albella, J. M., and Martinez-Duart, J. M., Thin Solid Films 90, 405408 (1982).Google Scholar
5 - Blouke, M. M., Nelson, M. D., Serra, M., Knoesen, A., Higgins, B. G., Delamere, W. A., Womack, G., Flores, J. S., Duncan, M., Reed, R., in High Resolution Sensors and Hybrid Systems, edited by Blouke, M. M., Chang, W. C., Khosla, R. P., Thorpe, L. J., SPIE Proc. 1656 (SPIE, Bellingham, WA, 1992), pp. 497507.Google Scholar
6 - Chu, A. K., Lin, H. C., and Cheng, W. H., J. Electronic Mater. 26(8), 889892 (1997).Google Scholar
7 - Motohiro, T. and Taga, Y., Appl. Optics 28(13), 24662482 (1989).Google Scholar
8 - Hermann, W. C. Jr., J. Vac. Sci. Technol. 18(3), 13031305 (1981).Google Scholar
9 - Hashimoto, T. and Yoko, T., Appl. Optics 34(16), 29412948 (1995).Google Scholar
10 - Demiryont, H., Sites, J. R., and Geib, K., Appl. Optics 24(4), 490495 (1985).Google Scholar
11 - Kukli, K., Aarik, J., Aidla, A., O. Kohan, Uustare, T., and Sammelselg, V., Thin Solid Films 260, 135142 (1995).Google Scholar
12 - Strauss, G. N., Lechner, W., and Pulker, H. K., Thin Solid Films 351, 5356 (1999).Google Scholar
13 - Ghodsi, F. E., Tepehan, F. Z., and Tepehan, G. G., Thin Solid Films 295, 1115 (1997).Google Scholar
14 - Zhang, J.-Y., Fang, Q., and Boyd, I. W., Appl. Surf Sci. 138–139, 320324 (1999).Google Scholar
15 - Boughaba, S., Islam, M. U., Sproule, G. I., and Graham, M. J., Surface & Coatings Technology 120–121, 757764 (1999).Google Scholar
16 - Boughaba, S., Sproule, G. I., McCaffrey, J. P., Islam, M., and Graham, M. J., Thin Solid Films, 358(1-2), 104113 (2000).Google Scholar