Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T07:03:34.405Z Has data issue: false hasContentIssue false

Orientation-Dependent Sulfide Passivation of Indium Arsenide

Published online by Cambridge University Press:  21 February 2011

E.E. Novikov
Affiliation:
A.F.Ioffe Physico-Teohnioal Institute, 26 Politekhnioheskaya st, 194021 St.Petersburg, Russia
E.E. Chaikina
Affiliation:
A.F.Ioffe Physico-Teohnioal Institute, 26 Politekhnioheskaya st, 194021 St.Petersburg, Russia
Get access

Abstract

The effect of sulfide passivatlon on the photoluminescence properties of InAs relative to the surface orientation has been investlgated. Chemical bonds formed in the passivation process have been studied using X-ray photoelectron spectroscopy. It was found that both As-S and In-S bonds form at the (111)A face, whereas only As-S bonds form at the (111 )B face. Improvement of photoluminescence properties was found to be associated with a decrease in the surface content of the oxides and elemental arsenic. Sulfidizing results in a reduction of the surface state density by an order of magnitude.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sandroff, C.J, Nottenburg, R.N., Bischoff, J.-C., and Bhat, R., Appl.Phys.Lett. 51, 33 (1987).CrossRefGoogle Scholar
2. Oigawa, H.., Fan, J.-F., Nannichi, Y., Sugahara, H., and Oshima, M., Jpn.J.Appl.Phys. 30, L322 (1991).CrossRefGoogle Scholar
3. Katayama, M., Aono, M., Oigawa, H., Nannichi, Y. Suganara, H., and Oshima, M., Jpn.J.Appl.Phys. 30, L786 (1991).CrossRefGoogle Scholar
4. Berkovitz, V.L., Bessolov, V.N-., L'vova, T.V., Novikov, E.B., Safarov, V.I., Khasleva, R.V., and Tsarenkov, B.V., J.Appl.Phys. 70, 3707 (1991).CrossRefGoogle Scholar
5. Allaberenov, A., Zotova, N.V., Nasledov, D.N., and Neulmina, A.D., Fiz.Tekh. Poluprovodn. 4, 1939 (1970) (Sov.Phys.Semicond.).Google Scholar
6. Daw, M.S. and Smith, D.L., Solid St.Comm. 37, 205 (1981).CrossRefGoogle Scholar
7. Dixon, J.R., Phys.Rev. 107, 374 (1957).CrossRefGoogle Scholar
8. Spicer, W.E., Chye, P.W., Skeath, P.R., Su, C.Y., and Lindau, I., J.Vac.Sci.Technol. 16, 1422 (1988).CrossRefGoogle Scholar
9. Freeouf, J.L. and Woodall, J.M., Appl.Phys.Lett. 39, 727 (1981).CrossRefGoogle Scholar
10. Schwartz, G.P., Gualtierl, G.J., Griffiths, J.E., Thurmond, C.D., and Schwartz, B., J.Electrochem.Soc. 127, 2488 (1980).CrossRefGoogle Scholar
11. Sze, S.M., Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981), p.760.Google Scholar