Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-04T00:10:57.540Z Has data issue: false hasContentIssue false

Origins of Viscoelastic Dissipation in Self-Assembled Organic Monolayers

Published online by Cambridge University Press:  10 February 2011

N. D. Shinn
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1413;, ndshinn@sandia.gov
T. A. Michalske
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1413;, ndshinn@sandia.gov
Get access

Abstract

Although self-assembled monolayers (SAMs) are promising candidates for interfacial lubricants in micro-electromechanical systems, the relationship between the monolayer structure and its viscoelastic properties is not understood. Using Acoustic Wave Damping (AWD), we have measured the complex shear modulus of linear alkane thiol monolayers, HS(CH2)n-1 CH3 denoted as Cn, on Au(111)-textured substrates. The AWD technique measures the elastic energy storage and dissipative loss within a SAM adsorbed onto the electrodes of a quartz crystal microbalance. For C12, C14, and C18, SAMs, the storage modulus increases with alkane chain length, but the loss modulus exhibits no systematic correlation. To investigate the origins of energy dissipation, we used a new, high-sensitivity oscillator circuit to simultaneously monitor the adsorption kinetics and acoustic damping during monolayer growth from the gas phase. For both C9 and C12 thiols, the dissipation in the growing monolayer can be correlated with distinct two-dimensional fluid phases and the nucleation and growth of condensed-phase islands.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ulman, A.,Chem. Rev. 96, 1533 (1996).Google Scholar
2. Delamarche, E., Michel, B., Biebuyck, H. A. and Gerber, C., Adv. Mater. 8, 719 (1996).Google Scholar
3. Fenter, P., Thin Films (in press).Google Scholar
4. Dubois, L. H. and Nuzzo, R. G., Annu. Rev. Phys. Chem. 43, 437 (1992).Google Scholar
5. Poirier, G. E., Tarlov, M. J. and Rushmeir, H. E., Langmuir 10, 3383 (1994).Google Scholar
6. N.Camillone, III, Eisenberger, P., Leung, T. Y. B., Schwartz, P., Scoles, G., Poirier, G. E. and Tarlov, M. J., J. Chem. Phys. 101, 11031 (1994).Google Scholar
7. N.Camillone, III, Leung, T. Y. B., Schwartz, P., Eisenberger, P. and Scoles, G.,Langmuir 12, 2737 (1996).Google Scholar
8. Poirier, G. E. and Pylant, E. D., Science 272, 1145 (1996).Google Scholar
9. Schreiber, F., Ebcrhardt, A., Leung, T. Y. B., Schwartz, P., Wetterer, S. M., Lavrich, D. J., Berman, L., Fenter, P., Eisenberger, P. and Scoles, G., Phys. Rev. B (in press).Google Scholar
10. Zubrägel, Ch., Deuper, C., Schneider, F., Neumann, M., Grunze, M., Schertel, A. and Wöll, Ch., Chem. Phys. Lett. 238, 308 (1995).Google Scholar
11. Fenter, P., Eberhardt, A. and Eisenberger, P., Science 266, 1216 (1994).Google Scholar
12. III, N.Camillone, Chidey, C. E. D., Liu, G., Putvinski, T. M. and Scoles, G., J. Chem. Phys. 94, 8493 (1991).Google Scholar
13. Shinn, N. D., Limary, R., Daly, C., Michalske, T. A. and Landman, U., to be published.Google Scholar
14. Lu, C. and Czanderna, A. W., Applications of Piezoelectric Quartz Crystal Microbalances (Elsevier New York, 1984).Google Scholar
15. Stockbfidge, C. D., in Vacuum Microbalance Techniques, edited by Behrndt, K. H. (Plenum, New York, 1966) Vol.5, p. 193.Google Scholar
16. Martin, S. J., Granstaff, V. E. and Frye, G. C., Anal. Chem 63, 2272 (1991).Google Scholar
17. Wessendorf, K. and Shinn, N. D., to be published.Google Scholar
18. Krim, J. and Widom, A., Phys. Rev. B 38, 12184 (1988).Google Scholar
19. Karpovich, D. S. and Blanchard, G. J., Langmuir 10, 3315 (1994).Google Scholar
20. Lee, Y. J., Jeon, I. C., Paik, W. and Kim, K., Langmuir 12, 5830 (1996).Google Scholar
21. Thomas, R.C., Sun, L., Crooks, R. M. and Ricco, A. J., Langmuir 7, 620 (1991).Google Scholar
22. Since the alkane thiol monolayer is viscoelastic, the “rigid mass” assumption commonly used to equate frequency shifts to adsorbed mass [14] is rigorously invalid.Google Scholar
23. Peterlinz, K. A. and Georgiadis, R., Langmuir 12, 4731 (1996).Google Scholar
24. Castner, D. G., Hinds, K. and Grainger, D. W., Langmuir 12, 5083 (1996).Google Scholar
25. Shinn, N. D. and Michalske, T. A., to be published.Google Scholar
26. Gerdy, J. J. and III, W. A. Goodard, J. Am. Chem. Soc. 118, 3233 (1996).Google Scholar