Published online by Cambridge University Press: 26 February 2011
Out-of-phase boundaries (OPBs), planar faults between regions of a crystal that are misaligned by a fraction of a unit cell dimension, occur frequently in materials of high structural anisotropy. Rarely observed in the bulk, OPBs frequently exist in epitaxial films of layered complex oxides, such as YBCO-type, Aurivillius, and Ruddlesden-Popper phases, and frequently propagate through the entire thickness of a film, due to their large offset and the improbability of opposite-sign OPB annihilation. OPBs have previously been demonstrated to have a significant impact upon properties, so it is important to understand their generation. These faults arise through the same few mechanisms in the various layered complex oxides.
An effort is made to unify the discussion of nucleation of these defects, common to layered oxide materials. OPBs can nucleate at the film-substrate interface (primary) via steric, chemical, or misfit mechanisms, or post-growth (secondary) through crystallographic shear during decomposition of volatile components. Examples of the mechanisms observed during high-resolution transmission electron microscopy (HRTEM) study of Aurivillius and Ruddlesden-Popper phases are presented. A method for estimating the relative OPB density in a film from correlation of x-ray diffraction (XRD) θ-2θ data with TEM information on OPBs is presented.