Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T19:42:02.148Z Has data issue: false hasContentIssue false

Passivation of Defect States in Amorphous and Crystalline Si by use of Cyanide Treatment and Improvement of Solar Cell Characteristics

Published online by Cambridge University Press:  01 February 2011

Hikaru Kobayashi
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, and CREST, Japan Science and Technology Corporation, 8-1, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
Naozumi Fujiwara
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, and CREST, Japan Science and Technology Corporation, 8-1, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
Tetsushi Fujinaga
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, and CREST, Japan Science and Technology Corporation, 8-1, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
Daisuke Niinobe
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, and CREST, Japan Science and Technology Corporation, 8-1, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
Osamu Maida
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, and CREST, Japan Science and Technology Corporation, 8-1, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
Masao Takahashi
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, and CREST, Japan Science and Technology Corporation, 8-1, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
Get access

Abstract

We have developed a new method of eliminating defect states in Si. This method called cyanide treatment simply includes immersion of Si in KCN solutions followed by the rinse. The contamination by potassium ions can be completely prevented by the inclusion of 18-crown-6 in the KCN solutions (crown-ether cyanide treatment). When the crown-ether cyanide treatment was performed on intrinsic amorphous Si (a-Si) films, decreases in the photo-and dark current densities with the irradiation time were completely prevented. When cyanide treatment using aqueous KCN solutions was applied to pin-junction a-Si solar cells, the conversion efficiencies measured before and after light-induced degradation became higher than those with no treatment. These improvements are attributed to the elimination of defect and defect precursor states by the reaction with cyanide ions, resulting in the formation of Si-CN bonds. From density functional calculations, Si-CN bonds are found to possess a high bond energy of 4.5 eV. Due to the high bond energy, the bonds are not ruptured by heat treatment at 800°C and upon irradiation, resulting in the thermal and irradiation stability of the cyanide treatment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tsubomura, H. and Kobayashi, H., Critic. Rev. Solid State Mater. Sci., 18, 261 (1993).Google Scholar
2. Schropp, R. E. I., Linden, M. B. von der, Ouwens, J. D., Gooijer, H. de, Solar Energy Mater. Solar Cells 34 (1994) 455.10.1016/0927-0248(94)90073-6Google Scholar
3. Rüther, R., Livingstone, J., Solar Energy Mater. Solar Cells 36 (1994) 29.Google Scholar
4. Staebler, D. L., Wronski, C. R., Appl. Phys. Lett. 31 1977 292.10.1063/1.89674Google Scholar
5. Jones, R., Lister, G. M. S., Philos. Mag. B 61 1990 881.10.1080/13642819008207569Google Scholar
6. Orita, N., Matsumura, T., Katayama-Yoshida, H., J Non-Cyst. Solids 198-200 1996 347.10.1016/0022-3093(95)00701-6Google Scholar
7. Kobayashi, H., Tachibana, S., Yamanaka, K., Nakato, Y. and Yoneda, K., J. Appl. Phys. 81, 7630 (1997).10.1063/1.365340Google Scholar
8. Kobayashi, H., Asano, A., Asada, S., Yamashita, Y., Yoneda, K., and Todokoro, Y., J. Appl. Phys. 83, 2098 (1998).10.1063/1.366943Google Scholar
9. Kanazaki, E., Yoneda, K., Todokoro, Y., Nishitani, M., and Kobayashi, H., Solid State Commun. 113, 195 (2000).10.1016/S0038-1098(99)00457-3Google Scholar
10. Kobayashi, H., Asano, A., Takahashi, M., Yoneda, K., and Todokoro, Y., Appl. Phys. Lett. 77, 4392 (2000).10.1063/1.1332982Google Scholar
11. Takahashi, M., Asano, A., Maida, O., and Kobayashi, H., Proc. 17th European Photovoltaic Solar Energy Conf. Exhibition, VC3.45, Munich, Germany, 2001.Google Scholar
12. Kobayashi, H., Mori, T., Namba, K. and Nakato, Y., Solid State Commun. 92, 249 (1994).10.1016/0038-1098(94)90886-9Google Scholar
13. Kobayashi, H., Namba, K., Mori, T. and Nakato, Y., Phys. Rev. B 52, 5781 (1995).10.1103/PhysRevB.52.5781Google Scholar
14. Yamashita, Y., Namba, K., Nakato, Y., Nishioka, Y. and Kobayashi, H., J. Appl. Phys. 79, 7051 (1996).Google Scholar
15. Yamashita, Y., Asano, A., Nishioka, Y. and Kobayashi, H., Phys. Rev. B 59, 15872 (1999).Google Scholar
16. , Terman, Solid-State Electron. 5, 285 (1962).10.1016/0038-1101(62)90111-9Google Scholar
17. , Nicollian and Goetzberger, A., Bell Syst. Tech. J. 46, 1055 (1967).10.1002/j.1538-7305.1967.tb01727.xGoogle Scholar
18. Laughlin, R. B., Joannopoulos, J. D. and Chadi, D. J., Phys. Rev. B 21, 5733 (1980).10.1103/PhysRevB.21.5733Google Scholar
19. Kubota, T., Asano, A., Nishioka, Y. and Kobayashi, H., J. Chem. Phys. 111, 8136 (1999).10.1063/1.480148Google Scholar
20. Card, H. C., Solid-State Electron. 20, 971 (1977).10.1016/0038-1101(77)90206-4Google Scholar
21. Kobayashi, H., Kogetsu, Y., Ishida, T., and Nakato, Y., J. Appl. Phys. 74, 4756 (1993).10.1063/1.354346Google Scholar
22. Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).Google Scholar
23. Caplan, P. J., Poindexter, E. H., Deal, B. E. and Razouk, R. R., J. Appl. Phys. 50, 5847 (1979).10.1063/1.326732Google Scholar
24. McLean, F. B., IEEE Trans. Nucl. Sci. NS- 27, 1651 (1980).10.1109/TNS.1980.4331084Google Scholar
25. Kerr, J. A. in CRC Handbook of Chemistry and Physics, 75th ed., edited by Lide, D. R. and Frederikse, H. P. R. (CRC Press, Boca Raton, FL, 1994) pp. 951 – 9-73.Google Scholar