Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T01:18:22.305Z Has data issue: false hasContentIssue false

Performance characteristics of cw InGaN multiple-quantum-well laser diodes

Published online by Cambridge University Press:  17 March 2011

Michael Kneissl
Affiliation:
Electronic Materials Laboratory, XEROX Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, U.S.A.Electronic mail:kneissl@parc.xerox.com
William S. Wong
Affiliation:
Electronic Materials Laboratory, XEROX Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, U.S.A.
Chris. G. Van de Walle
Affiliation:
Electronic Materials Laboratory, XEROX Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, U.S.A.
John E. Northrup
Affiliation:
Electronic Materials Laboratory, XEROX Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, U.S.A.
David W. Treat
Affiliation:
Electronic Materials Laboratory, XEROX Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, U.S.A.
Mark Teepe
Affiliation:
Electronic Materials Laboratory, XEROX Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, U.S.A.
Naoko Miyashita
Affiliation:
Electronic Materials Laboratory, XEROX Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, U.S.A.
Peter Kiesel
Affiliation:
Electronic Materials Laboratory, XEROX Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, U.S.A.
Noble M. Johnson
Affiliation:
Electronic Materials Laboratory, XEROX Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304, U.S.A.
Get access

Abstract

The performance characteristics are reported for continuous-wave (cw) InGaN multiple-quantum-well laser diodes grown on epitaxially laterally overgrown GaN on sapphire substrates by metalorganic chemical vapor deposition. Room-temperature cw threshold currents as low as 41mA with operating voltages of 6.0V were obtained. The emission wavelength was near 400 nm with output powers greater than 20 mW per facet. Under cw conditions laser oscillation was observed up to 90°C. A significant reduction in thermal resistance was observed for laser diodes transferred from sapphire onto Cu substrates by excimer laser lift-off, resulting in increased cw output power of more than 100mW.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Jpn. Jour. Applied Physics 35, pp. L74– L76 (1996).Google Scholar
2. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Applied Physics Lett. 72, pp. 211213 (1998).Google Scholar
3. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Applied Physics Lett. 73, pp. 832834 (1998).Google Scholar
4. Nagahama, S., Iwasa, N., Senoh, M., Matsushita, T., Sugimoto, Y., Kiyoku, H., Kozaki, T, Sano, M., Matsumura, H., Umemoto, H., Chocho, K., Mukai, T., Jpn. Jour. Applied Physics 39, pp. L647 (2000).Google Scholar
5.See for example article in The Nikkei Industrial Daily Tuesday Edition, January 12th, 1999.Google Scholar
6. Kobayashi, T., Nakamura, F., Naganuma, K., Tojyo, T., Nakajima, H., Asatsuma, T., Kawai, H., and Ikeda, M., Electronics Lett. 34 (15), 1494 (1998).Google Scholar
7. Kuramata, A., Kubota, S., Soejima, R., Domen, K., Horino, K. and Tanahashi, T., Jpn. J. Appl. Phys. 37, L1373 (1998).Google Scholar
8. Kuramato, M., Sasaoka, C., Hisanaga, Y., Kimura, A., Yamaguchi, A.A., Sunakawa, H., Kureda, N., Nido, M., Usui, A. and Mizuta, M., Jpn. J. Appl. Phys. 38, L184, (1999).Google Scholar
9. Kneissl, M., Bour, D.P., Walle, C.G. Van de, Romano, L.T., Northrup, J.E., Wood, R.M., Teepe, M., Johnson, N.M., Applied Physics Lett. 75, 581 (1999).Google Scholar
10. Sakai, A., Sunakawa, H., Usui, A., Applied Physics Lett. 71, 2259 (1997).Google Scholar
11. Zheleva, T.S., Nam, O., Bremser, M.D., Davis, R.F., Applied Physics Lett. 71, 2472 (1997).Google Scholar
12. Miyake, H.; Motogaito, A.; Hiramatsu, K., Jpn. J. Appl. Phys. 38, L1000 (1999).Google Scholar
13. Youtsey, C., Adesida, I, Bulman, G., Applied Physics Lett. 71, 2151 (1997).Google Scholar
14. Youtsey, C., Romano, L.T., Molnar, R.J., Adesida, I., Applied Physics Lett. 74, 3537 (1999).Google Scholar
15. Joyce, W.B. and Dixon, R.W., Journal of Appl. Phys. 46, 855 (1975).Google Scholar
16. Wong, W.S., Cheung, N.W., Sands, T., Appl. Phys. Lett. 72, 599 (1998).Google Scholar
17. Wong, W.S., Kneissl, M., Mei, P., Treat, D.W., Teepe, M. and Johnson, N.M., Jpn. J. Appl. Phys. 39, L1203 (2000)Google Scholar
18. Wong, W.S., Kneissl, M., Mei, P., Treat, D.W., Teepe, M., and Johnson, N.M., submitted for publication in Appl. Phys. Lett..Google Scholar
19. Kneissl, M., Wong, W.S., Treat, D.W., Teepe, M., Myashita, N., Johnson, N.M., submitted for publication in IEEE Journal of Selected Topics in Quantum Electronics.Google Scholar