Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T18:57:05.940Z Has data issue: false hasContentIssue false

Performance of Injection-Limited Polymer Light-Emitting Diodes

Published online by Cambridge University Press:  01 February 2011

Paul W.M. Blom
Affiliation:
Materials Science Center and DPI, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Teunis van Woudenbergh
Affiliation:
Materials Science Center and DPI, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Hans Huiberts
Affiliation:
Philips Research Laboratories, Professor Holstlaan 4, 5656 AA Eindhoven, The Netherlands
Get access

Abstract

The electro-optical characteristics of a polymer light emitting diode (PLED) with a strongly reduced hole injection have been investigated. The device consists of a poly-p-phenylene vinylene semiconductor with a Ag hole injecting contact, which has an injection barrier of about 1 eV. It is observed that the light and current density of such an injection-limited PLED strongly exceed the expected device characteristics. Numerical calculations of the injection-limited PLED show that the enhanced performance can be explained by a very high electric field at the hole injecting contact, due to trapped electrons.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Burroughes, J. H. Bradley, D. D. C. Brown, A. R. Marks, R. N. Mackey, K. Friend, R. H. Burn, P. L. and Holmes, A. B. Nature (London) 347, 539 (1990).Google Scholar
[2] Marks, R. N. and Bradley, D. D. C. Synth. Metals 57, 4128 (1993).Google Scholar
[3] Bässler, H., Phys. Status Solidi B 175, 15 (1993).Google Scholar
[4] Abkowitz, M. A. Mizes, H. A. and Facci, J. S. Appl. Phys. Lett. 66, 1288 (1995).Google Scholar
[5] Gartstein, Yu. N. and Conwell, E. M. Chem. Phys. Lett. 255, 93 (1996).Google Scholar
[6] Conwell, E. M. and Wu, M. W. Appl. Phys. Lett. 70, 1867 (1997).Google Scholar
[7] Arkhipov, V. I. Emelianova, E. V. Tak, Y. H. and Bässler, H., J. Appl. Phys. 84, 848 (1998).Google Scholar
[8] Arkhipov, V. I. Wolf, U. and Bässler, H., Phys. Rev. B 59, 7514 (1999).Google Scholar
[9] Woudenbergh, T. van, Blom, P. W. M. Huiberts, J. N. and Vissenberg, M. C. J. M. Appl. Phys. Lett. 79, 1697 (2001).Google Scholar
[10] Blom, P.W.M. and Jong, M.J.M. de, IEEE J. Sel. Top. Quantum Electron. 4, 105 (1998).Google Scholar
[11] Blom, P. W. M. Jong, M. J. M. de, and Munster, M. G. Van, Phys. Rev. B 55, R656 (1997).Google Scholar
[12] Bozano, L. Carter, S.A. Scott, J.C., and Brock, P.J. Appl. Phys. Lett. 74, 1132 (1999).Google Scholar
[13] Blom, P. W. M. Jong, M. J. M. de, and Vleggaar, J. J. M. Appl. Phys. Lett. 68, 3308 (1996).Google Scholar
[14] Campbell, I. H. Hagler, T. W. Smith, D. L. and Ferraris, J. P. Phys. Rev. Lett. 76, 1900 (1996).Google Scholar
[15] Murata, K.A. Cinà, S., and Greenham, N.C. Appl. Phys. Lett. 79, 1193 (2001).Google Scholar
[16] Hwang, W. and Kao, K.C. Solid-State Electr. 15, 523 (1972).Google Scholar