Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T10:16:41.709Z Has data issue: false hasContentIssue false

Phase State and Physical Properties of the Mo-Ru-Ph-Pd Alloys

Published online by Cambridge University Press:  15 March 2011

Tohru Sugahara
Affiliation:
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Ken Kurosaki
Affiliation:
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Aikebaier Yusufu
Affiliation:
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Hiroaki Muta
Affiliation:
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Yuji Ohishi
Affiliation:
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Shinsuke Yamanaka
Affiliation:
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan Research Institute of Nuclear Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
Satoshi Komamine
Affiliation:
Japan Nuclear Fuel Limited, 4-108 Okitsuke Obuchi, Rokkasho, Kamikita, Aomori 039-3212, Japan
Eiji Ochi
Affiliation:
Japan Nuclear Fuel Limited, 4-108 Okitsuke Obuchi, Rokkasho, Kamikita, Aomori 039-3212, Japan
Get access

Abstract

Mo3Ru5MPd (M = Ru, Rh, Pd) as the simulated materials for the undissolved residue in the nuclear fuel reprocessing were prepared by arc melting method. The physical properties and oxidation behavior of the alloys were evaluated from viewpoint of the safety and economy in the reprocessing. The electrical resistivity, ρ, of Mo3Ru5RhPd was shown to be 0.8 μΩm at room temperature. On the other hand, the ρ values of samples without Rh were marked at 0.4 μΩm. The thermal properties of the each sample had the different thermal transfer characteristics. In particular, although the thermal conductivities of Mo3Ru5RhPd and Mo3Ru5Pd2 samples show almost the same value, the lattice thermal conductivities of both samples showed different values. Oxidation behavior was analyzed using the thermogravity(TG) and differential thermal analyses(DTA). The TG curve of each sample by oxidation showed different results. These results indicate that the simulated materials of the alloys without Rh: Mo-Ru-Pd were not appropriate to simulate the thermophysical characteristics of the typical simulated materials with undissolved residue Mo-Ru-Rh-Pd alloys. Therefore, in the spent nuclear fuel reprocessing, the mock test of reprocessing without to use Rh is difficult to carry out.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ewart, F.T., Taylor, R.G., Horspool, J.M.J.M., James, G., J. Nucl. Mater. 61 (1976) 254.Google Scholar
2. Kleykamp, H., Paschoal, J.O., Pejsa, R., Thummler, F., J. Nucl. Mater. 130 (1985) 426.Google Scholar
3. Kleykamp, H., J. Nucl. Mater. 131 (1985) 221.Google Scholar
4. Sato, I., Furuya, H., Arima, T., Idemitsu, K., Yamamoto, K., J. Nucl. Sci. Technol. 36 (1999) 775.Google Scholar
5. O’Boyle, D.R., Browm, F.L., Dwight, A.E., J. Nucl. Mater. 35 (1970) 257.Google Scholar
6. Sato, I., Furuya, H., Arima, T., Idemitsu, K., Yamamoto, K., J. Nucl. Mater. 273 (1999) 239.Google Scholar
7. Yamanaka, S., Kurosaki, K., J. Alloys Comp. 353 (2003) 269–273.Google Scholar
8. Yamanaka, S., Kurosaki, K., Matsuda, T., Uno, M., J. Nucl. Mater. 294 (2001) 99.Google Scholar
9. Matsuda, T., Yamanaka, S., Kurosaki, K., Uno, M., Kobayashi, S., J.Alloys Comp. 322 (2001) 77.Google Scholar
10. Yamanaka, S., Matsuda, T., Kurosaki, K., Uno, M., J. Nucl. Sci. Technol. Suppl. 3 (Nov.) (2002) 709–712.Google Scholar
11. Matsuda, T., Yamanaka, S., Kurosaki, K., Kobayashi, S., Uno, M., J.Nucl. Sci. Technol. Suppl.3 (Nov.) (2002) 823–826.Google Scholar
12. Kurosaki, K., Yamanaka, S.. Matsuda, T., Uno, M., J. Nucl. Sci. Technol. Suppl. 3 (Nov.) (2002) 807–810.Google Scholar
13. Kurosaki, K., Oyama, T., Matsuda, T., Uno, M., Yamanaka, S., J. Nucl. Sci. Technol. Suppl. 3 (Nov.) (2002) 815–818.Google Scholar
14. Kleykamp, H., J. Less-Common Met. 144 (1988) 79.Google Scholar
15. Yamawaki, M., Nagai, Y., Kogai, T., Kanno, M., in: Thermodynamics of Nuclear Materials 1979, Vol. 1, IAEA, 1980, p. 249.Google Scholar
16. Kleykamp, H., J. Nucl. Mater. 167 (1989) 49–63.Google Scholar
17. Cordfunke, E.H.P., Konings, R.J.M., Thermochim. Acta 139 (1989) 99.Google Scholar
18. Matsui, T., Naito, K., Thermochim. Acta 139 (1989) 299.Google Scholar
19. Matsui, T., Naito, K., J. Nucl. Sci. Technol. 26 (1989) 1102.Google Scholar
20. Japan Atomic Energy Agency, ‘A test of spent fuel dissolution’, JAERI-M, 91–010Google Scholar
21. Pflieger, R., Malki, M., Guari, Y., Larionova, J., Grandjean, A., J Am. Ceram. Soc, 92, 7 1560–1566 (2009)Google Scholar
22. Izumi, F., Momma, K., Solid State Phenom., 130, 15 (2007).Google Scholar
23. Caughey, D. and Thomas, R., Proc.IEEE, vol. 52, pp. 2192–2193, 1967.Google Scholar
24. Yamanaka, S., Kobayashi, H., Kurosaki, K., J. Alloys Comp. 349 (2003) 269.Google Scholar
25. Yamanaka, S., Kosuga, A., Kurosaki, K., J. Alloys Comp. 350 (2003) 288.Google Scholar