Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T20:09:46.367Z Has data issue: false hasContentIssue false

Phase-Field Simulation of Lamellar Structure Formation in MoSi2/NbSi2 Duplex Silicide

Published online by Cambridge University Press:  18 March 2013

Yuichiro Koizumi
Affiliation:
Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai, Miyagi 980-8577, Japan
Toshihiro Yamazaki
Affiliation:
Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai, Miyagi 980-8577, Japan Department of Materials Processing, Tohoku University, 6-6-02 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
Akihiko Chiba
Affiliation:
Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai, Miyagi 980-8577, Japan
Koji Hagihara
Affiliation:
Department of Adaptive Machine Systems, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Takayoshi Nakano
Affiliation:
Division of Materials and Manufacturing Science, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Koretaka Yuge
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
Kyosuke Kishida
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
Haruyuki Inui
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
Get access

Abstract

We conducted phase-field simulations of microstructural evolution in C11b-MoSi2 / C40-NbSi2 dual phase alloy with and without Cr-addition to examine the factors responsible for the formation and stability of the lamellar structure on the basis of thermodynamics, micromechanics and first-principles calculations. The first principles calculation was used for evaluating the interfacial energy, segregation energy of solute Cr-atoms and lattice parameters of imaginary disilicides for estimating the effects of solute distribution on the lattice misfit. When both of lattice misfit and the anisotropy of interfacial energy is taken into account, a lamellar structure similar to that observed experimentally is formed. In the absence of Cr-addition, the straightness of lamellar structure decreased slightly. When an isotropic interfacial energy is assumed, lamellar structure is not formed. Instead, a microstructure with habit planes parallel to {1 0 $\bar 1$ 1} plane of C40-phase is formed. Thus, the anisotropy of interfacial energy is crucial for the lamellar structure formation rather than the elastic energy due to lattice misfit.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Vasudevan, A. K., Petrovic, J. J., Mat. Sci. Eng. A 155, 117 (1992).CrossRefGoogle Scholar
Ito, K., Inui, H., Shirai, Y., Yamaguchi, M., Philos. Mag. A 72, 10751097 (1995).10.1080/01418619508239954CrossRefGoogle Scholar
Inui, H., Ishikawa, K., Yamaguchi, M., Intermetallics 8, 11591168 (2000).CrossRefGoogle Scholar
Nakano, T., Nakai, Y., Maeda, S., Umakoshi, Y., Acta Mater. 50, 17811795 (2002).10.1016/S1359-6454(02)00030-7CrossRefGoogle Scholar
Hagihara, K., Nakano, T., Hata, S., Zhu, O., Umakoshi, Y.. Scripta Mater. 62, 613616 (2010).10.1016/j.scriptamat.2010.01.002CrossRefGoogle Scholar
Wang, Y. Z., Li, J., Acta Mater. 58, 12121235 (2010).CrossRefGoogle Scholar
Sundman, N., Ågren, J., J. Phys. Chem. Sol, 42, 297301 (1981).CrossRefGoogle Scholar
Koizumi, Y., Nukaya, T., Suzuki, S., Kurosu, S., Li, Y., Matsumoto, H., Sato, K., Tanaka, Y., Chiba, A., Acta Mater. 60, 29012915 (2012).CrossRefGoogle Scholar
Yamazaki, T., Koizumi, Y., Chiba, A., Hagihara, K., Nakano, T., Yuge, K., Kishida, K., Inui, H., MRS Fall Meeting (Boston, MA 2012).Google Scholar
Cahn, J. W., Hilliard, J. E., J. Chem. Phys. 28, 258 (1958).CrossRefGoogle Scholar
Allen, S. M., Cahn, J. W., Acta Metal. 27, 10851095 (1979).CrossRefGoogle Scholar
Hagihara, K., Hama, Y., Todai, M., Nakano, T., MRS Fall Meeting (Boston, MA 2012).Google Scholar
Nakano, T., Hagihara, K., Nakai, Y., Umakoshi, Y., Intermetallics 14, 13451350 (2006)CrossRefGoogle Scholar
Nakano, T., Hagihara, K., Scripta Mater. (in press) doi:10.1016/j.scriptamat.2012.10.053 Google Scholar
Wei, F. G., Kimura, Y., Mishima, Y., Intermetallics, 9, 661670 (2001).10.1016/S0966-9795(01)00044-9CrossRefGoogle Scholar