Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T04:35:27.322Z Has data issue: false hasContentIssue false

Photocatalytic Deposition of Nickel Nanoparticles on Titanium Dioxide

Published online by Cambridge University Press:  01 February 2011

Julia L. Rodríguez
Affiliation:
Lab. Catálisis y Materiales, ESIQIE – Instituto Politécnico Nacional. Zacatenco, 07738 México, D.F. México. Emails: mavalenz@ipn.mx, tpoznyak@ipn.mx Lab. Ing. Química Ambiental, ESIQIE – Instituto Politécnico Nacional, Zacatenco, 07738 México, D.F. México Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, 31109, Chihuahua, Chih., México
Francisco Pola
Affiliation:
Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, 31109, Chihuahua, Chih., México
Miguel A. Valenzuela
Affiliation:
Lab. Catálisis y Materiales, ESIQIE – Instituto Politécnico Nacional. Zacatenco, 07738 México, D.F. México. Emails: mavalenz@ipn.mx, tpoznyak@ipn.mx
Tatiana Poznyak
Affiliation:
Lab. Catálisis y Materiales, ESIQIE – Instituto Politécnico Nacional. Zacatenco, 07738 México, D.F. México. Emails: mavalenz@ipn.mx, tpoznyak@ipn.mx
Get access

Abstract

Metallic nanoparticles may be tailored to obtain specific size and morphology. In this work we present the synthesis of Ni/TiO2 catalysts by a photodeposition method. Our investigation included the photochemical and photocatalytic reduction of the nickel organometallic precursor (Ni (II) acetylacetonate) over titania (Degussa P-25) support. The photo-reduction kinetics was followed by UV-Vis and the catalysts were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). According to the results, the photochemical reduction of the Ni precursor was only 30% at λ= 254 nm, whereas, the photocatalytic route was approximately 90 % (λ= 365 nm) yielding Ni nanoparticles with diameter ranging from 10 to 40 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fendler, J.H (Ed.), Nanoparticles and Nanostructured Films, Wiley-VCH, Weinheim, 1998.Google Scholar
2. Toshima, N., Yonezawa, T., New J. Chem. 22, 1179 (1998).Google Scholar
3. Roucoux, A., Schulz, J., Patin, H., Chem. Rev. 102, 3757 (2002).Google Scholar
4. Cushing, B.L., Kolesnichenko, V.L., O'Connor, C. J., Chem. Rev. 104, 3893 (2004).Google Scholar
5. Dahl, J.A., Maddux, B.L.S., Hutchison, J.E., Chem. Rev. 107, 2228 (2007).Google Scholar
6. Sakamoto, M., Fujistuka, M., Majima, T., J. Photochem.Photobiol.C:Photochem.Rev., 10, 33 (2009).Google Scholar
7. Peled, A., Mirchin, N., Liquid phase photodeposition processes from colloid solution. Photo-Excited Processes diagnostics and applications. Kluwer academic publishers, 2003.Google Scholar
8. Zhang, F., Chen, J., Zhang, X., Gao, W., Jin, R., Guan, N., Catalysis Today 93-95, 645 (2004).Google Scholar
9. Litter, M.I., Appl.Catal. B: Environ. 23, 89 (1999).Google Scholar
10. Carp, O., Huisman, C.L., Reller, A., Prog. Solid State Chemistry 32, 33 (2004).Google Scholar
11. Giuffrida, S., Gublielmo, G., Condorelli, G., Costanzo, L., Ventimiglia, G., J. Nanoparticles Res. 9, 611 (2007).Google Scholar
12. Forouzan, F., Richards, T. C., Bard, A. J., J. Phys. Chem. 100, 18123 (1996).Google Scholar
13. Nalwa, H.S. (Ed.), Handbook of Photochemistry and Photobiology, V-1, Inorganic Photochemistry, American Scientific Publishers, 2003.Google Scholar
14. Konstantinou, I.K., Albanis, T.A., Appl.Catal. B:Environ., 49, 1 (2004)Google Scholar
15. Mills, A., Valenzuela, M.A., J.Photochem.Photobiol. A: Chem., 165, 25 (2004).Google Scholar