No CrossRef data available.
Published online by Cambridge University Press: 28 February 2011
We have performed photoluminescence (PL) measurements at liquid nitrogen temperature under high pressure up to 5.5 GPa and in the temperature range 10-300 K at atmospheric pressure on {(ZnSe)30(ZnSe0.92Te0.08)30(ZnSe)30[(CdSe)1(ZnSe)2]9}x5 multiple quantum wells. The PL peaks, EB, E1 and Ew corresponding to the band edge luminescence in ZnSe barrier layer, the transitions from the first conduction subband to the heavy-hole subband in ZnSe0.92Te0.08 layers and [(CdSe)1(ZnSe)2]9 ultra short period superlattice quantum well (SPSLQW) layers have been observed. Experimental results show that ZnSe0.92Te0.08/ZnSe forms a type-I superlattice (SL) in contrast to the type-II ZnSe/ZnTe SL. The pressure coefficients of the EB, E1 and Ew exciton peaks have been determined as 67, 63 and 56 meV/GPa, respectively. With increasing temperature (or pressure), the E1 peak-intensity drastically decreases which is attributed to the thermal effect (or the appearance of many defects in ZnSe0.92Te0.08 under higher pressure).