Published online by Cambridge University Press: 01 February 2011
Hydrogenated amorphous silicon (a–Si:H) n–i–p photodiodes are used as pixel sensor elements in large-area flat-panel detectors for medical imaging diagnostics. Accurate model of the sensor plays an imperative role in determining the performances of the detector systems as well as ascertaining design issues prior to production. This work presents the formulation of a compact model for segmented a–Si:H n–i–p photodiodes suitable for circuit-level simulation. The underlining equations of the model are based on device physics where the parameters are extracted from pertinent measurement results of previously fabricated a–Si:H n–i–p photodiodes. Furthermore, the implemented model allows photoresponse simulation with the addition of an external current source. Results of the simulation demonstrated excellent matching with measurement data for different photodiode sizes at various temperatures. The model is implemented in Verilog-A and simulated under Cadence Virtuoso design environment using device geometry and extracted parameters as inputs. The model formulation and parameter extraction process, as well as measurements and simulation results are presented.