Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T06:51:06.363Z Has data issue: false hasContentIssue false

Piezoelectric Properties of Sol-Gel Derived PZT Thin Films with Various Zr/Ti Ratios

Published online by Cambridge University Press:  10 February 2011

G. Teqwee
Affiliation:
Donnelly Corporation, 4545 East Fort Lowell Road, Tucson, AZ 85712
K. C. McCarthy
Affiliation:
Donnelly Corporation, 4545 East Fort Lowell Road, Tucson, AZ 85712
F. S. McCarthy
Affiliation:
Donnelly Corporation, 4545 East Fort Lowell Road, Tucson, AZ 85712
D. G. Davis Jr
Affiliation:
Donnelly Corporation, 4545 East Fort Lowell Road, Tucson, AZ 85712 Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721.
J. T. Dawley
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721.
B.J.J. Zelinski
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721.
D. R. Uhlmann
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721.
Get access

Abstract

Piezoelectric thin films are useful for application in microelectromechanical devices. A series of sol-gel derived PZT (lead zirconate titanate) thin films with various Zr/Ti ratios were prepared on platinized substrates. These films were fired to 650C - 700C to crystallize them into single-phase perovskite films, and their piezoelectric properties were measured using optical lever-based instrumentation. Large d33 piezoelectric coefficients up to 400 pm/V were obtained at the morphotropic phase boundary (PZT 53/47), making such films attractive in applications such as thin film transducers, microcanti levers and surface acoustic wave devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jaffe, B., Cook, W.R. and Jaffe, H., Piezoelectric Ceramics. Acad. Press, NY 1971.Google Scholar
2. Berlincourt, D.A., Cmolik, C. and Jaffe, H., Proc. IRE, 220 (1959).Google Scholar
3. Newnham, R.E., MRS Bulletin May, 20 (1997).Google Scholar
4. Desu, S.B., Ramesh, R., Tuttle, B.A., Jones, R.E. and Yoo, I.K., Ferroelectric Films V, MRS Svmp. Proc. 433 (1996).Google Scholar
5. Bernstein, D., Integ. Ferroelectrics 15, 289 (1997).Google Scholar
6. Sayer, M., Vasant Kumar, C.V.R., Barrow, D., Zou, L. and Amm, D.T., MRS Symp. Proc. 243, 39 (1991).Google Scholar
7. Lisboa, O., Barrow, D., sayer, M., Chen, C.K., Elee. Lett. 31, 1491 (1995).Google Scholar
8. Chen, J., Udayakumar, K.R., Brooks, K.G. and Cross, L.E., MRS Symp. Proc. 243, 361 (1991).Google Scholar
9. Lukacs, M., Sayer, M., Knapik, D., candela, R. and Foster, F.S., Pore. IEEE Ultrasonics Symp., 901 (1991).Google Scholar
10. Morten, B., De Cicco, G. and Prudenziati, M., Sensors and Actuators 37–38, 337 (1993).Google Scholar
11. Morten, B., De Cicco, G. and Prudenziati, M., Sensors and Actuators 31, 153 (1992).Google Scholar
12. Wakabayashi, S., Totani, H., Sakata, M., Ikeda, M., Goto, H., Takeuchi, M. and Yada, T., SPIE Proc. 2639, 304 (1995).Google Scholar
13. Polla, D.L. and Francis, L.F., MRS Bulletin July, 59 (1996).Google Scholar
14. Polla, D.L., MRS Symp. Proc. 243, 55 (1991).Google Scholar
15. Tijhen, W., IEEE Micro Electro Mechanical Systems Proc, Nara, Japan (1991).Google Scholar
16. Shiosaki, T., Ferroelectrics 91, 39 (1989).Google Scholar
17. Lefki, K. and Dormans, G.J.M., J. Appl. Phys. 76, 1764(1994).Google Scholar
18. Li, J., Viehland, D., lakeman, C.D.E. and Payne, D.A., J. Mater. Sci. 10, 1435 (1995).Google Scholar
19. Kholkin, A.L., Trarantsev, A.K., Colla, E.L., Taylor, D.V. and Setter, N., Integ. Ferroelectrics 15, 317 (1997).Google Scholar
20. Hidaka, T., Maruyama, T., Sakai, I., Saito, M., Willis, L.A., Hiskes, R., DiCarolis, S.A. and Amano, J., presented at ISIF 97.Google Scholar
21. Fox, G.R., Mueller, C.A.P., Setter, N., Ky, N.H. and Limberger, G., J. Vac. Sci. Tech. A14, 800 (1996).Google Scholar
22. Brooks, K.G., Damjanovic, D., Setter, N., Luginbuhl, P., Racine, G.A. and de Rooij, N.F., Proc. 9th IEEE ISAF, 520 (1995).Google Scholar
23. Fox, G.R., Mueller, C.A.P., Setter, N., Ky, N.H. and Limberger, G., J. Vac. Sci. Tech. A14, 800 (1996).Google Scholar
24. Muralt, P., abstracts ISIF 97.Google Scholar
25. McClennen, R.C., Charych, D., Zurn, S. and Polla, D.L., presented at ISIF 97.Google Scholar
26. Lee, C., Itoh, T., Sasaki, G. and Suga, T., Mater. Chem. Phys. 44, 25 (1996).Google Scholar
27. Teowee, G., Boulton, J.M. and Uhlmann, D.R., MRS Symp. Proc. 271, 345 (1992).Google Scholar
28. Dawley, J.T., Teowee, G., Zelinski, B.J.J. and Uhlmann, D.R., MRS Symp. Proc. 433, 317 (1996).Google Scholar
29. Teowee, G., Boulton, J.M., Motakef, S., Zelinski, B.J.J., Uhlmann, D.R. and Zanoni, R., SPIE Proc. 1758, 236 (1992).Google Scholar
30. Landolt, and Bornstein, , Solid State Physics 29b, 1 (1986).Google Scholar
31. Moure, C., Villegas, M., Fernandez, J.F. and Duran, P., Ferroelectrics 127, 113 (1992).Google Scholar
32. Kholkin, A.L., Wuthrich, Ch., Taylor, D.V. and Setter, N., Rev. Sei. Instrum. 67, 1935 (1996).Google Scholar